Citation: Shao-Long YANG, Yu-Huan CHEN, Mu-Lun YAN, Cheng-Ting WEI, Shi-Xiong LI, Bing-Jing JIA. Effect of free water molecule in copper complexes on the performance of light absorption and adsorption of Cr(Ⅵ)[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2160-2168. doi: 10.11862/CJIC.2023.179 shu

Effect of free water molecule in copper complexes on the performance of light absorption and adsorption of Cr(Ⅵ)

  • Corresponding author: Shi-Xiong LI, lsx1324@163.com
  • Received Date: 2 June 2023
    Revised Date: 27 September 2023

    Fund Project: 广西高校中青年教师科研基础能力提升项目 2023KY0710广西自然科学基金 桂科AD23026019国家级大学生创新创业训练项目 202311354014

Figures(7)

  • Cu(ClO4)2·6H2O and (1-methyl-1H-benzimidazol-2-yl) methanol (HL) reacted in a mixed solution of methanol and acetonitrile to produce dark blue[Cu(HL)3](ClO4)2·H2O (1) and light blue[Cu(HL)3](ClO4)2 (2). Their structures were characterized by elemental analysis, IR, thermogravimetric analysis (TGA), and single-crystal X-ray diffraction. The test results showed that complexes 1 and 2 are both composed of[Cu(HL)3]2+ and the counter anion ClO4-, except for the addition of one free water molecule in 1. The Cu(Ⅱ) ions in 1 and 2 are coordinated with N and O atoms from the HL; the coordination number was six. The results of TGA showed that the structures of 1 and 2 could remain unchanged in a range of 30-245℃. However, complex 1 with a dark blue color had a wider absorption peak at 289 nm compared to 2 with a light blue color. The adsorption experiment showed that 1 exhibited better adsorption performance for Cr(Ⅵ) than 2 at pH=4-8. It can be seen that the free water molecule in 1 has a certain impact on light absorption and the adsorption of Cr(Ⅵ).
  • 加载中
    1. [1]

      Geoghegan B L, Liu Y, Peredkov S, Dechert S, Meyer F, DeBeer S, Cutsail Ⅲ G E. Combining valence-to-core X-ray emission and Cu K-edge X-ray absorption spectroscopies to experimentally assess oxidation state in organometallic Cu(Ⅰ)/(Ⅱ)/(Ⅲ) complexes[J]. J. Am. Chem. Soc., 2022,144(6):2520-2534. doi: 10.1021/jacs.1c09505

    2. [2]

      Liao B L, Li S X. Multifunctional Mn(Ⅱ) Metal-organic framework for photocatalytic aerobic oxidation and CH direct trifluoromethylation[J]. J. Catal., 2022,414:294-301. doi: 10.1016/j.jcat.2022.09.021

    3. [3]

      Li J X, Xiong L Y, Fu L L, Bo W B, Du Z X, Feng X. Structural diversity of Mn(Ⅱ) and Cu(Ⅱ) complexes based on 2-carboxyphenoxyacetate linker: Syntheses, conformation comparison and magnetic properties[J]. J. Solid State Chem., 2022,305122636. doi: 10.1016/j.jssc.2021.122636

    4. [4]

      Li S X, Yang S L, Liang G C, Yan M L, Wei C T, Lu Y. Regulation and photocatalytic degradation mechanism of a hydroxyl modified UiO-66 type metal organic framework[J]. RSC Adv., 2023,13(8):5273-5282. doi: 10.1039/D3RA00004D

    5. [5]

      Liu Y, Yiu S C, Ho C L, Wong W Y. Recent advances in copper complexes for electrical/light energy conversion[J]. Coord. Chem. Rev., 2018,375:514-557. doi: 10.1016/j.ccr.2018.05.010

    6. [6]

      Li J X, Zhang Y H, Du Z X, Feng X. One-pot solvothermal synthesis of mononuclear and oxalate-bridged binuclear nickel compounds: Structural analyses, conformation alteration and magnetic properties[J]. Inorg. Chim. Acta, 2022,530120697. doi: 10.1016/j.ica.2021.120697

    7. [7]

      Li S X, Liu L M, Deng Y, Huang Y H, Cheng Y F, Liao B L. Terminal anion induced zinc(Ⅱ) mononuclear complexes trans-to-cis isomerization regulate photoluminescence properties and its solution behavior[J]. Polyhedron, 2019,174114158. doi: 10.1016/j.poly.2019.114158

    8. [8]

      Li S X, Qiang J W, Lu L, Yang S L, Chen Y F, Liao B L. In situ synthesis mechanism and photocatalytic performance of cyano-bridged Cu(Ⅰ)/Cu(Ⅱ) ultrathin nanosheets[J]. Front. Chem., 2022,10911238. doi: 10.3389/fchem.2022.911238

    9. [9]

      LI S X, FENG A Q, HU Y, LIANG G C, LU L F, LU H P. Two-dimensional copper-based coordination polymer: Synthesis, structure and ion effect on adsorption of Cr(Ⅳ)[J]. Chinese J. Inorg. Chem., 2022,38(5):941-950.  

    10. [10]

      Pang W, Shao B, Chen X, Gu Q X, Yang F J, Li S X, Huang J. Enhancing the activity of metal-organic nanosheets for oxygen evolution reaction by substituent effects[J]. J. Colloid Interf. Sci., 2022,608:306-312. doi: 10.1016/j.jcis.2021.09.115

    11. [11]

      Yang G P, Li K, Lin X, Li Y J, Cui C X, Li S X, Cheng Y Y, Liu Y F. Regio- and stereoselective synthesis of (Z)-3-ylidenephthalides via H3PMo12O40-catalyzed cyclization of 2-acylbenzoic acids with benzylic alcohols[J]. Chin. J. Chem., 2021,39(11):3017-3022. doi: 10.1002/cjoc.202100397

    12. [12]

      Li S X, Qiang J W, Liao B L. Structure, magnetism and oxygen reduction reaction in mixed-valent Cu(Ⅰ)…Cu(Ⅱ) complex supported by benzimidazole derivative[J]. Inorg. Chim. Acta, 2021,521120356. doi: 10.1016/j.ica.2021.120356

    13. [13]

      Li S X, Luo P, Wu H Z, Wei C H, Hu Y, Qiu G L. Strategies for improving the performance and application of MOFs photocatalysts[J]. ChemCatChem, 2019,11(13):2978-2993. doi: 10.1002/cctc.201900199

    14. [14]

      Li S X, Sun S L, Wu H Z, Wei C H, Hu Y. Effects of electron-donating groups on the photocatalytic reaction of MOFs[J]. Catal. Sci. Technol., 2018,8(6):1696-1703. doi: 10.1039/C7CY02622F

    15. [15]

      Li S X, Wei C H, Hu Y, Wu H Z, Li F S. In situ synthesis and photocatalytic mechanism of a cyano bridged Cu(Ⅰ) polymer[J]. Inorg. Chem. Front., 2018,5(6):1282-1287. doi: 10.1039/C8QI00205C

    16. [16]

      Noh T H, Heo E, Park K H. Motion of an isolated water molecule within a flexible coordination cage: Structural properties and catalytic effects of ionic palladium(Ⅱ) complexes[J]. J. Am. Chem. Soc., 2011,133(5):1236-1239. doi: 10.1021/ja1093925

    17. [17]

      Coates J H, Gentle G J, Lincoln S F. Influence of local hydrophobic environment on acid dissociation constants of coordinated water molecules[J]. Nature, 1974,249(5459):773-775. doi: 10.1038/249773a0

    18. [18]

      Liu H L, Ru H Y, Sun M E, Wang Z Y, Zhang S Q. Organic-inorganic manganese bromide hybrids with water-triggered luminescence for rewritable paper[J]. Adv. Opt. Mater., 2022,10(4)2101700. doi: 10.1002/adom.202101700

    19. [19]

      Hermann P, Kotek J, Kubíček V, Lukeš I. Gadolinium(Ⅲ) complexes as MRI contrast agents: Ligand design and properties of the complexes[J]. Dalton Tran., 2008,23:3027-3047.

    20. [20]

      Collins K D. Charge density-dependent strength of hydration and biological structure[J]. Biophys. J., 1997,72(1):65-76. doi: 10.1016/S0006-3495(97)78647-8

    21. [21]

      Wolf M E, Turney J M, Schaefer H F. High level ab initio investigation of the catalytic effect of water on formic acid decomposition and isomerization[J]. Phy. Chem. Chem. Phy., 2020,22(44):25638-25651. doi: 10.1039/D0CP03796F

    22. [22]

      Louie M K, Francisco J S, Verdicchio M, Klippenstein S J, Sinha A. Dimethylamine addition to formaldehyde catalyzed by a single water molecule: A facile route for atmospheric carbinolamine formation and potential promoter of aerosol growth[J]. J. Phy. Chem. A, 2016,120(9):1358-1368. doi: 10.1021/acs.jpca.5b04887

    23. [23]

      Wen Q L, Duan J Y, Wang W B, Huang D J, Liu Y W, Shi Y L, Fang J K, Nie A M, Liu H Q, Zhai T Y. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity[J]. Angew. Chem. Int. Ed., 2022,134(35)e202206077. doi: 10.1002/ange.202206077

    24. [24]

      Dolomanov O V, Bourhis L J, Gildea R J, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    25. [25]

      Manzoor S, Yin X, Yang J Q, Zhang J G, Zhang Q, Chen D. Synthesis and properties of transition metal coordination energetic materials based on a versatile and multifunctional 1-aminotetrazol-5-one ligand[J]. Inorg. Chim. Acta, 2021,525120468. doi: 10.1016/j.ica.2021.120468

    26. [26]

      Yam V W W, Chan A K W, Hong E Y H. Charge-transfer processes in metal complexes enable luminescence and memory functions[J]. Nat. Rev. Chem., 2020,4(10):528-541. doi: 10.1038/s41570-020-0199-7

    27. [27]

      Wen J, Fang Y, Zeng G M. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade[J]. Chemosphere, 2018,201:627-643. doi: 10.1016/j.chemosphere.2018.03.047

    28. [28]

      Jamshidifard S, Koushkbaghi S, Hosseini S, Rezaei S, Karamipour A, Jafarirad A, Irani M. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(Ⅱ), Cd(Ⅱ) and Cr(Ⅳ) ions from aqueous solutions[J]. J. Hazard. Mater., 2019,368:10-20. doi: 10.1016/j.jhazmat.2019.01.024

  • 加载中
    1. [1]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    7. [7]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    8. [8]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    9. [9]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    10. [10]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    11. [11]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    12. [12]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    17. [17]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    18. [18]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    19. [19]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    20. [20]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

Metrics
  • PDF Downloads(1)
  • Abstract views(410)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return