Citation: Ming-Hui LI, Qun YANG, Xing-Yu ZOU, Wu-Lin SONG, Da-Wen ZENG. Synthesis of erythrocyte-like CuS with twin structure and photo-Fenton catalytic performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2143-2150. doi: 10.11862/CJIC.2023.178 shu

Synthesis of erythrocyte-like CuS with twin structure and photo-Fenton catalytic performance

  • Corresponding author: Wu-Lin SONG, wulins@126.com
  • Received Date: 17 February 2023
    Revised Date: 4 October 2023

Figures(10)

  • An erythrocyte-like copper sulfide material with twins was synthesized by a solvothermal method. It was found that the different precursor proportions and reaction times play key roles in the formation of erythrocyte-like CuS. The formation mechanism of twin erythrocyte-like CuS was systematically elaborated. The Fenton-like system composed of CuS and H2O2 showed excellent degradation performance under visible light irradiation, and the degradation rate of methylene blue reached 95% after 50 min under visible light. The catalytic performance of the erythrocyte-like CuS and the synthetic flower ball-like CuS was compared, and the degradation performance of the erythrocyte-like CuS was better, indicating that the twin crystals accelerate the separation of photogenerated electrons-holes.
  • 加载中
    1. [1]

      Wang L, Jin P X, Duan S H, Huang J W, She H D, Wang Q Z, An T C. Accelerated Fenton-like kinetics by visible-light-driven catalysis over iron(Ⅲ) porphyrin functionalized zirconium MOF: Effective promotion on the degradation of organic contaminants[J]. Environ. Sci.: Nano, 2019,6(8):2652-2661. doi: 10.1039/C9EN00460B

    2. [2]

      Qin Y X, Li G Y, Zhang L Z, An T C. Protocatechuic acid promoted catalytic degradation of rhodamine B with Fe@Fe2O3 core-shell nanowires by molecular oxygen activation mechanism[J]. Catal. Today, 2019,335:144-150. doi: 10.1016/j.cattod.2018.10.058

    3. [3]

      Zhang Y, Zhou M H. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values[J]. J. Hazard. Mater., 2019,362:436-450. doi: 10.1016/j.jhazmat.2018.09.035

    4. [4]

      Ganiyu S O, Sable S, Eidin M G. Advanced oxidation processes for the degradation of dissolved organics in produced water: A review of process performance, degradation kinetics and pathway[J]. Chem. Eng. J., 2022,429132492. doi: 10.1016/j.cej.2021.132492

    5. [5]

      Metin S, Çifçi D İ. Chemical industry wastewater treatment by coagulation combined with Fenton and photo-Fenton processes[J]. J. Chem. Technol. Biotechnol., 2023,98(5):1158-1165. doi: 10.1002/jctb.7321

    6. [6]

      Tanveer R, Yasar A, Tabinda A, Ikhlaq A, Nissar H, Nizami A. Comparison of ozonation, Fenton, and photo-Fenton processes for the treatment of textile dye-bath effluents integrated with electrocoagulation[J]. J. Water Process Eng., 2022,46102547. doi: 10.1016/j.jwpe.2021.102547

    7. [7]

      Isik M, Terlemezoglu M, Gasanly N, Parlak M. Structural, morphological and temperature-tuned bandgap characteristics of CuS nano-flake thin films[J]. Physica E, 2022,144115407. doi: 10.1016/j.physe.2022.115407

    8. [8]

      Zhang F, Zhuang H Q, Zhang W, Yin J, Cao F H, Pan Y X. Noble-metal-free CuS/CdS photocatalyst for efficient visible-light-driven photocatalytic H2 production from water[J]. Catal. Today, 2019,330:203-208. doi: 10.1016/j.cattod.2018.03.060

    9. [9]

      HOU L M, QING H, JI Q H. Research progress on catalysts, principles and mechanisms of Fenton-like reactions[J]. Environmental Chemistry, 2022,41(6):1843-1855.  

    10. [10]

      Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004,304(5669):422-426. doi: 10.1126/science.1092905

    11. [11]

      Liu M C, Jing D W, Zhou Z H, Guo L J. Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation[J]. Nat. Commun., 2013,42278. doi: 10.1038/ncomms3278

    12. [12]

      Sun S D, Song X P, Kong C C, Liang S H, Ding B J, Yang Z M. Unique polyhedral 26-facet CuS hollow architectures decorated with nanotwinned, mesostructural and single crystalline shells[J]. CrystEngComm, 2011,13(20):6200-6205. doi: 10.1039/c1ce05563a

    13. [13]

      Xu J, Teng F, Xu C Y, Yang Y, Yang L M, Kan Y D. Unique anatase TiO2 twinning crystals formed by high-energy {001} facets and the improved photocatalytic activity[J]. J. Phys. Chem. C, 2015,119(23):13011-13020. doi: 10.1021/acs.jpcc.5b01993

    14. [14]

      Liu M C, Wang L Z, Lu G Q, Yao X D, Guo L J. Twins in Cd1-xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water[J]. Energy Environ. Sci., 2011,4:1372-1378. doi: 10.1039/c0ee00604a

    15. [15]

      Sun S D, Zhang X C, Cui J, Yang Q, Liang S H. Twin engineering of photocatalysts: A minireview[J]. Catal. Sci. Technol., 2020,10(13):4164-4178. doi: 10.1039/D0CY00917B

    16. [16]

      Fang Z M, Liu Y B, Qi J J, Xu Z F, Qi T Y, Wang L D. Establishing a high-speed electron transfer channel via CuS/MIL-Fe heterojunction catalyst for photo-Fenton degradation of acetaminophen[J]. Appl. Catal. B-Environ., 2023,320121979. doi: 10.1016/j.apcatb.2022.121979

    17. [17]

      Bott R C, Bowmaker G A, Davis C A, Hope G A, Jones B E. Crystal structure of[Cu4(tu)7](SO4)2]·H2O and vibrational spectroscopic studies of some copper(Ⅰ) thiourea complexes[J]. Inorg. Chem., 1998,37(4):651-657. doi: 10.1021/ic970910q

    18. [18]

      Adhikari S, Sarkar D, Madras G. Hierarchical design of CuS architectures for visible light photocatalysis of 4-chlorophenol[J]. ACS Omega, 2017,2(7):4009-4021. doi: 10.1021/acsomega.7b00669

    19. [19]

      Qi H, Huang J F, Cao L Y, Wu J P, Wang D Q. One-dimensional CuS microstructures prepared by a PVP-assisted microwave hydrothermal method[J]. Ceram. Int., 2012,38(3):2195-2200. doi: 10.1016/j.ceramint.2011.10.066

    20. [20]

      Wang Y H, Huo Q H, Shi L, Feng G, Wang J C, Han L N, Chang L P. Adsorption of mercury species on selected CuS surfaces and the effects of HCl[J]. Chem. Eng. J., 2020,393124773. doi: 10.1016/j.cej.2020.124773

    21. [21]

      Chu L M, Zhou B B, Mu H C, Sun Y Z, Ping X. Mild hydrothermal synthesis of hexagonal CuS nanoplates[J]. J. Cryst. Growth, 2008,310(24):5437-5440. doi: 10.1016/j.jcrysgro.2008.09.159

    22. [22]

      Yang Z G, Wu Z G, Liu J, Liu Y X, Gao S Y, Wang J A, Xiao Y, Zhong Y J, Zhong B H, Guo X D. Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage[J]. J. Mater. Chem. A, 2020,8(16):8049-8057. doi: 10.1039/D0TA00763C

    23. [23]

      Chung C Y, Hsu C H, Lu C H. Preparation and mechanism of nest-like YBO3: Tb3+ phosphors synthesized via the microemulsion-mediated hydrothermal process[J]. J. Am. Ceram. Soc., 2011,94(9):2884-2889. doi: 10.1111/j.1551-2916.2011.04466.x

    24. [24]

      Dilena E, Dorfs D, George C, Miszta K, Povia M, Genovese A, Casu A, Prato M, Manna L. Colloidal Cu2-x(SySe1-y) alloy nanocrystals with controllable crystal phase: Synthesis, plasmonic properties, cation exchange and electrochemical lithiation[J]. J. Mater. Chem., 2012,22(26):13023-13031. doi: 10.1039/c2jm30788j

    25. [25]

      Lie S Q, Wang D M, Gao M X, Huang C Z. Controllable copper deficiency in Cu2-xSe nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence[J]. Nanoscale, 2014,6:10289-10296. doi: 10.1039/C4NR02294G

  • 加载中
    1. [1]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    2. [2]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    3. [3]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    11. [11]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    12. [12]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    13. [13]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    14. [14]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    15. [15]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    16. [16]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    17. [17]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    18. [18]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    19. [19]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    20. [20]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

Metrics
  • PDF Downloads(7)
  • Abstract views(448)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return