Efficient and stable electrocatalytic reduction of CO2 by ZIF-8 composites
- Corresponding author: Xiao-Meng LÜ, laiyangmeng@163.com
Citation:
Hao-Tian WANG, Shan-He GONG, Wen-Bo WANG, Dong-Dong GE, Xiao-Meng LÜ. Efficient and stable electrocatalytic reduction of CO2 by ZIF-8 composites[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(11): 2151-2159.
doi:
10.11862/CJIC.2023.177
当前,由于CO2等温室气体大量排放引起的环境问题已经十分严峻。针对大气中CO2浓度过高的问题,将CO2转化为高附加值的化学品成为研究热点[1]。常见的CO2催化转化技术有化学转化、酶催化[2]、光催化[3]、电催化[4]等。其中电催化因其可利用可再生能源作为动力,且具有反应条件温和[5],反应过程可控,具备大规模应用潜力[6]等优势成为了研究热点。CO2是一种非极性、线性对称分子,化学性质稳定、还原难度高,又因为CO2水溶性低,所以存在催化活性低[7]、反应起始电位高[8]等问题,因此制备高活性、高稳定性和高产物选择性的催化剂成为关键。
目前,研究者已经研制出了许多优良的催化剂,包括金属催化剂[9-10]、单原子催化剂[11]、分子催化剂[12-13]等。其中,金属有机骨架(MOFs)是一种由有机配体和金属离子连接而成的骨架材料[14]。MOFs材料具有大的比表面积、可调节的孔洞结构和稳定的化学结构[15]。这些特性都有望促进其成为优良的电催化CO2还原反应(eCO2RR)催化剂。沸石咪唑盐骨架(ZIF-8)是MOFs的一个亚类[16],是由锌离子(Zn2+)和2-甲基咪唑(2-MIM)配体形成的四配位骨架结构[17]。ZIF-8材料中Zn2+和咪唑中的氮位点配位有利于CO2的吸附,推进反应的高效进行,甚至有望在低CO2浓度的实际气流中开展高选择性的捕获与转化[18]。但ZIF-8与大多数MOFs材料一样,自身导电性较差,限制了其在eCO2RR方面的应用[19]。目前,ZIF-8衍生复合催化材料在eCO2RR方面有着广泛研究[20-21],而对ZIF-8本征活性的研究还较少。Wang等通过研究发现,原始的ZIF-8在宽的电势窗口下,CO2转化为CO的选择性低于50%,并且电流密度低于10 mA·cm-2。在ZIF-8电催化活性的基础上,通过计算得到:由于ZIF-8中Zn2+的3d轨道被完全占据,eCO2RR的活性位点是咪唑配体上的sp2 C,因此Wang等通过掺杂供电子基配体邻二氮菲,调节了催化剂活性位点的电子结构,提高了产物选择性,使得产物CO的选择性在-1.1 V(vs RHE)电位下达到了90.57%,但整个反应过程中的电流密度仍低于10 mA·cm-2 [22]。Bao和Wang等将导电炭黑与ZIF-8混合,并用聚四氟乙烯(PTFE)在碳纸上涂覆一层疏水层,提高了催化剂的导电性和传质,疏水层有利于CO2在催化剂表面的传输并且降低析氢反应(HER)的影响,增强了eCO2RR的活性[23]。Lu课题组通过低温处理工艺破坏了ZIF-8金属中心与有机配体之间部分成键,形成不饱和金属位点,但保留其结构的完整性,提高了ZIF-8的导电性[24]。但ZIF基催化剂在反应过程中仍存在电流密度低、稳定性差等问题。因此,基于ZIF-8的本征活性,提高其导电性及催化活性和产物选择性,仍是亟需解决的问题。
碳纳米管(CNT)是一种具有优良导电、导热、疏水性能的介孔材料[25],可以为电子的转移提供通道,是支持各种催化剂很有前途的载体材料。例如,HKUST-1是一类铜基金属有机骨架材料,Anbia等将多壁碳纳米管(MWCNT)加入HKUST-1中,复合材料的CO2吸附能力显著增强[26]。由于ZIF-8与大多数MOFs材料一样,在水中稳定性差并且自身微孔结构限制了气体在孔隙内的传质。ZIF-8的微孔和CNT介孔形成多级孔结构,有望解决上述ZIF-8稳定性以及传质问题,还可以利用CNT自身的性质,增强电催化材料的导电性和疏水性,获得更好的eCO2RR性能。
我们通过调控金属离子与有机配体的物质的量之比,合成了4种不同粒径大小(X,nm)的ZIF-8材料(ZIF-8-X,X=500、200、100、50),对4种催化剂进行电化学测试后,得到催化性能相对较好的ZIF-8-50,通过调控ZIF-8-50在CNT上原位生长,设计构建了碳纳米管稳定金属有机骨架材料(ZIF-8-50@CNT)体系,进一步提高了ZIF-8催化材料的导电性能及其eCO2RR的活性与产物选择性。融合ZIF-8和CNT二者的优势,发展高活性、高选择性、高稳定性催化材料体系,有望制备高效的新一代eCO2RR材料。
根据文献得到了ZIF-8-50[27]。取0.41 g Zn(NO3)2·6H2O和0.82 g 2-MIM(物质的量之比为1:8)分别各自溶于40 mL甲醇中,搅拌20 min充分溶解,将2-MIM溶液与Zn(NO3)2·6H2O溶液混合,在室温下搅拌24 h。之后,将混合溶液静置24 h。将静置后的溶液进行离心处理,并用甲醇清洗3次,在真空干燥箱中60 ℃干燥12 h,得到ZIF-8-50。通过调控Zn(NO3)2·6H2O和2-MIM的物质的量之比为1∶1、1∶2、1∶4,分别得到了ZIF-8-500、ZIF-8-200、ZIF-8-100。
取100 mg商用碳纳米管(CNT,内径:5~12 nm,外径:30~50 nm,管长:10~20 μm)置于烧杯中,加入15 mL硝酸(HNO3)和5 mL硫酸(H2SO4),搅拌反应12 h。反应后的溶液通过抽滤、洗涤、干燥,收集得到表面氧化的CNT。氧化CNT表面含有富氧官能团,带有负电荷,有利于ZIF-8在表面原位生长[25]。
将100 mg氧化处理后的CNT置于装有40 mL甲醇的烧杯中,超声1 h使其均匀分散,加入20 mL含有0.41 g Zn(NO3)2·6H2O的甲醇溶液,搅拌6 h后,加入20 mL含有0.82 g的2-MIM的甲醇溶液,持续搅拌24 h。另外静置24 h后离心清洗,最后在60 ℃真空干燥箱中干燥12 h得到ZIF-8-50@CNT(图 1)。
采用X射线衍射仪(XRD,D8 Advanced)分析催化剂的物相组成,Cu Kα线为辐射源,波长0.154 06 nm,工作电压40 kV,工作电流40 mA,扫描速度为5 (°)·min-1,2θ范围为5°~80°。采用场发射扫描电子显微镜(SEM,JSM-7001F)对样品的形貌进行研究。采用高分辨透射电子显微镜(HRTEM,H-7800)观察样品的形貌和结构(加速电压100 kV)。采用X射线光电子能谱(XPS,AXIS)对样品进行定性和半定量分析,通过XPS谱图的峰位和峰形可以得到样品表面元素成分、化学态等信息,通过峰面积可以获得样品表面元素的含量。利用比表面测定仪(JW-BK200B)分析样品的N2吸附-脱附性质并计算比表面积、孔容积和孔径分布。
称量5 mg ZIF-8-X样品和2 mg炭黑置于5 mL离心管中,滴加3 mL乙醇和30 μL Nafion溶液(5%),超声1 h使样品分散均匀,制得催化剂油墨。
称量10 mg ZIF-8-50@CNT样品置于5 mL离心管中,滴加3 mL乙醇和30 μL Nafion溶液(5%),超声1 h使样品分散均匀,制得催化剂油墨。作为对照,采用表面氧化后的CNT作为载体,浸渍负载ZIF-8-50,得到ZIF-8-50/CNT。
将疏水碳纸裁成1 cm×2.5 cm大小,用铅笔在碳纸正反面高0.5 cm处画一道横线标记,将制得的催化剂均匀地滴涂在碳纸两侧,滴涂面积为1 cm2,晾干备用。
采用H型电解池,阳极为铂电极,阴极为催化剂电极,参比电极为Ag/AgCl(3.5 mol·L-1 KCl)电极,阴阳极反应室之间用Nafion117膜隔开;电解质溶液为0.5 mol·L-1 KHCO3溶液。
将H型电解池与电化学工作站(CHI1140C)和气相色谱仪(GC9790Ⅱ)相连。首先,向电解质溶液中通入CO2气体30 min,目的是使CO2气体在电解质溶液中饱和(pH=7.2)。在电化学测试前,我们对工作电极进行了80圈循环伏安(CV)扫描,使催化剂充分活化。利用电化学工作站对催化剂进行eCO2RR性能测试,测试中所有电位均相对于可逆氢电极(RHE),转换公式1如下:
|
(1) |
在0~-1.2 V内,以5 mV·s-1的扫速对催化剂进行线性扫描伏安(LSV)测试,得到的曲线为电流-电压曲线图,可以初步得到催化剂对CO2还原的活性。为了评估催化剂的真实催化性能,必须先得到电极的真实电化学面积。我们通过测试催化剂的双电层电容(Cdl),计算得到催化剂的电化学活性表面积(ECSA)。双电层电容是在选定的电势范围内(-0.35~-0.45 V)进行CV测试,得到一系列不同扫速的曲线,然后用该电位下的电流密度和扫描速率作图,得到一条直线,直线斜率即为双电层电容。双电层电容和ECSA之间成正比关系,因此可以通过双电层电容来比较不同催化剂之间ECSA的关系。ECSA可由下式2得到:
|
(2) |
其中Cs为标准电极的比电容,本文中使用的是平均值40 μL·cm-2。
比表面活性(SA)可以展现催化剂的内在活性,它是通过将电流密度归一化到电催化剂的比表面积估算比活性。比表面活性是每个活性位点活度的近似值,可以反映出催化剂的固有活性,因此是研究催化剂内在活性的可靠指标。催化剂的比表面活性可由下式3得到:
|
(3) |
MA为单位质量催化剂的电流密度。
在-0.9 V、100 000~1 Hz下对催化剂进行电化学阻抗(EIS)测试(CHI760e)。利用气相色谱对CO2还原产物CO和H2进行分析,其中CO用氢离子火焰检测器(FID)检测,H2用热导检测器(TCD)检测。2种产物通过法拉第效率(FE)来反映产物的相对含量。法拉第效率的计算公式4为:
|
(4) |
式中nX为CO2还原反应中得到一个产物分子所需要转移的电子数,F为法拉第常数,V为室温下CO2气体的流速,单位为mL·s-1,v为进入气相色谱仪的H2或CO的气体体积浓度,p0为环境压力,R为理想气体常数,T0为环境温度,Itotal为电池的稳定电流。
采用X射线衍射分析仪对所制备样品的晶相和结构进行了表征。ZIF-8-X、ZIF-8-50@CNT、ZIF-8-50/CNT样品的XRD图对比如图 2a所示。6个XRD图中都有4个宽的衍射峰,分别位于7.4°、10.4°、12.8°、18.0°,对应于ZIF-8-X、ZIF-8-50@CNT、ZIF-8-50/CNT样品中ZIF-8的(110)、(200)、(211)、(222)晶面,证明了ZIF-8-X的成功制备。值得注意的是,ZIF-8-50@CNT和ZIF-8-50/CNT都没有出现CNT在25.8°出现的特征峰。采用低压N2吸附-脱附法对CNT、ZIF-8-50和ZIF-8-50@CNT进行了Brunauer-Emmett-Teller(BET)比表面积分析(图 2b)。结果发现,ZIF-8-50样品曲线符合Ⅰ型等温线,CNT和ZIF-8-50@CNT样品曲线符合Ⅳ型等温线,ZIF-8-50@CNT吸附脱附等温线上出现的滞后环与CNT的介孔结构有关。根据测试结果,纯CNT、ZIF-8-50、ZIF-8-50@CNT的比表面积分别为79、1 322、995 m2·g-1。其中ZIF-8-50和ZIF-8-50@CNT都具有较大的比表面积,但CNT的存在会影响ZIF-8材料的比表面积,因此ZIF-8-50@CNT材料的比表面积有一定的减小[25]。ZIF-8-50、ZIF-8-50@CNT的平均微孔孔径分别为0.354、0.368 nm。图 2b中ZIF-8-50@CNT存在的4 nm左右的介孔结构与纯CNT的介孔结构相吻合。
SEM图像显示不同粒径大小ZIF-8-X的形貌,ZIF-8随机均匀分散,每个粒子都呈现规则的十二面体结构,形貌与其他文献中表述一致[19](图 3a~3d)。ZIF-8-50@CNT的SEM图像显示ZIF-8-50不均匀地生长在CNT表面,部分ZIF-8-50会出现部分团聚现象[24](图 3e)。图 3f和3g为ZIF-8-50和ZIF-8-50@CNT材料的低倍率透射电镜图像。从图 3f看到ZIF-8有着规则的六边形结构,从图 3g看到ZIF-8-50不均匀地生长在CNT表面。在0.5 mol·L-1 KHCO3电解质溶液中对纯CNT、ZIF-8-X和ZIF-8-50@CNT材料进行接触角测试实验,测试发现大粒径的ZIF-8材料具有亲水特性(图 3h),纯CNT材料接触角为122°,ZIF-8-50材料接触角为139°,ZIF-8-50@CNT材料的接触角为143°。复合之后材料的接触角有所增大,因此ZIF-8-50@CNT的疏水性有所增强。CNT和ZIF-8复合进一步提升了材料的疏水性,强疏水性有利于多孔材料在纳米甚至微米尺度上捕获一层气体,因此CO2在电极的气-液-固界面富集,促进CO2持续的电化学还原;且强疏水表面还能抑制竞争反应HER的发生,从而增强eCO2RR的性能[28]。
通过XPS研究合成的复合材料的化学成分和表面价键信息。图 4显示了Zn2p、C1s、N1s区域的XPS光谱和高分辨XPS光谱。在图 4a中,ZIF-8-50、ZIF-8-50@CNT的XPS光谱显示了C、N、Zn元素的存在。通过对谱图进行分析发现,ZIF-8-50@CNT中C的原子百分数(72.52%)明显高于ZIF-8-50中C的原子百分数(64.82%),这是由于CNT的引入,提高了C元素的含量。ZIF-8-50和ZIF-8-50@CNT样品C1s的高分辨结构谱图(图 4b)出现了C—C、C=C、C—N的特征峰,ZIF-8-50@CNT在287.0 eV出现的C—O特征峰是由于CNT被氧化,表面产生许多含氧官能团[29]。ZIF-8-50和ZIF-8-50@CNT样品中N1s的高分辨结构谱图(图 4c)在约399.0和401.1 eV出现2个峰,分别对应于N—C和N—Zn的特征峰。ZIF-8-50和ZIF-8-50@CNT样品中Zn2p的高分辨结构谱图(图 4d)在1 022.0和约1 045 eV出现2个峰,分别对应于Zn2p3/2和Zn2p1/2的特征峰,证明在ZIF-8原位生长在CNT表面时,Zn的状态没有发生变化。
催化剂的LSV曲线(图 5a)表明,通过原位生长制备的ZIF-8-50@CNT的起始电位为-0.55 V,通过浸渍负载制备的ZIF-8-50/CNT的起始电位为-0.7 V,ZIF-8-X(X=500、200、100、50)的起始电位约为-0.75 V。相比于其他5种催化剂,ZIF-8-50@CNT的起始电位明显降低。在测试电位0~-1.2 V,ZIF-8-X的电流密度都低于20 mA·cm-2,在-1.1 V电位下,ZIF-8-50@CNT的电流密度已经超过20 mA·cm-2。在不同电位下对6种催化剂进行电化学测试,通过气相色谱检测eCO2RR气相产物,通过1H NMR没有检测出液相产物。从图 5b中看到,在测试电位下,ZIF-8-X的CO的法拉第效率都低于55%,ZIF-8-50@CNT在较宽的电势范围内(-0.9~-1.2 V),CO的法拉第效率一直保持在80%以上。图 5c计算得到了6种催化剂的CO部分电流密度(jCO),在-0.8~-1.2 V下,ZIF-8-X的CO部分电流密度低于10 mA·cm-2;在-0.9 V下,ZIF-8-50@CNT的CO部分电流密度已经达到10 mA·cm-2。ZIF-8-50@CNT的H2法拉第效率低于20%(图 5d),说明CNT的加入抑制了析氢反应,有利于目标产物CO的产生。图 5e为通过计算得到的6种催化剂的双电层电容:ZIF-8-50@CNT((1.918±0.048) mF·cm-2)、ZIF-8/CNT((1.967±0.049) mF·cm-2)、ZIF-8-50((1.917±0.048) mF·cm-2)、ZIF-8-100((0.500 0±0.013) mF·cm-2)、ZIF-8-200((0.101 2±0.002 5) mF·cm-2)、ZIF-8-500((0.097 25±0.002 2) mF·cm-2)。EIS测试可以揭示催化剂的反应动力学过程,从图 5f中可以看到ZIF-8-50@CNT呈现出更小的半圆,说明ZIF-8-50@CNT在催化反应中电荷转移电阻更小(Rct=14.62 Ω)。图 5g为通过计算得到的6种催化剂的塔菲尔斜率:ZIF-8-50@CNT(136 mV·dec-1)、ZIF-8-50/CNT(266 mV·dec-1)、ZIF-8-50(271 mV·dec-1)、ZIF-8-100(270 mV·dec-1),ZIF-8-200(282 mV·dec-1)、ZIF-8-500(280 mV·dec-1)。图 5h为ZIF-8-50@CNT、ZIF-8-50/CNT、ZIF-8-50在-0.9~-1.2 V电位下的比表面活性,其中在-1.1 V电位下,ZIF-8-50@CNT的比表面活性达到ZIF-8-50比表面活性的3.5倍。电化学测试结果表明,ZIF-8-50原位生长在CNT表面提高了催化剂的导电性,同时复合材料的介孔结构加快了传质过程,使得CO2气体能更好地扩散到催化剂表面[29],有利于抑制析氢反应;且小粒径ZIF-8催化剂更有利于活性位点的暴露,由于ZIF-8-50和CNT之间的界面协同作用,ZIF-8-50@CNT相比其他5种催化剂有更快的初始电子转移过程[30]和更高的内在活性。这些因素共同提升了复合材料ZIF-8-50@CNT的eCO2RR性能。图 5i比较了本催化剂与其他文献中ZIF基催化剂的CO法拉第效率和CO部分电流密度。在-1.1 V电位下,ZIF-8-50 @CNT催化剂的CO部分电流密度为15.6 mA·cm-2,远高于其他ZIF基催化剂(jCO < 10 mA·cm-2)[20, 22-23, 30],并且CO的法拉第效率也保持在较高的水平。
为了进一步评估催化剂的eCO2RR性能,我们在-1.0 V电势下进行了稳定性测试,如图 6所示。可以看出,在10 h稳定性测试中,ZIF-8-50@CNT的电流密度保持相对稳定,没有明显波动,CO的法拉第效率保持在80%以上,整个过程中析氢反应得到很好的抑制,说明ZIF-8-50@CNT催化剂在较长时间电解过程中能够保持稳定的活性(图 6a)。ZIF-8-50材料在稳定性测试中,电流密度在2 h后就开始逐渐降低,且CO的法拉第效率很快就降到了很低的水平(图 6b)。为了探究2种催化剂稳定性不同的原因,我们将2种催化剂分别进行了不同时间的稳定性测试以及形貌分析。如图 7所示,在一开始的稳定性测试中2种催化剂的结构都没有改变,但在3 h时,ZIF-8-50催化剂的形貌已经开始发生改变,8 h时,ZIF-8-50的结构塌陷,而ZIF-8-50@CNT催化剂在8 h测试后结构仍然保留。这是由于CNT的加入,催化剂的疏水性得到提升,避免了催化剂在水溶液中的水解;并且ZIF-8原位生长在CNT上,ZIF-8的稳定性得到了提高。
我们在ZIF-8活性的基础上,通过简单的湿化学方法制备了几种不同ZIF-8催化剂,并将其用于eCO2RR。筛选了不同尺寸的ZIF-8材料,将优化的ZIF-8原位生长在CNT表面,提升了催化剂的导电性和疏水性,降低了反应的起始电位,提高了CO产物的选择性,增强了反应过程中的稳定性。在-0.9~-1.2 V电势窗口下,CO的法拉第效率一直保持在80%以上,并且在10 h稳定性测试中,催化剂活性保持稳定。相比于原始ZIF-8催化剂,eCO2RR性能得到很大的提升。本方法合成简便,有利于催化剂的大规模制备,并且为eCO2RR和其他催化领域提供了合理的策略。
Abdlraouf S M, Shahram G, Hamid G R. A novel sensor based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for efficient electrocatalytic oxidation and trace level detection of hydrazine[J]. Sens. Actuator B-Chem., 2015,220:627-633. doi: 10.1016/j.snb.2015.05.127
Moore E C, Ciccotto P J, Peterson E N, Lamm M S, Albertson R C, Roberts R B. Polygenic sex determination produces modular sex polymorphism in an African cichlid fish[J]. Proc. Natl. Acad. Sci. U.S.A., 2022,119(14)2118574119. doi: 10.1073/pnas.2118574119
Luo Y H, Liu J, Dong L Z, Li S L, Lan Y Q. From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure[J]. Coord. Chem. Rev., 2019,390:86-126. doi: 10.1016/j.ccr.2019.03.019
Yang C H, Li S Y, Zhang Z C, Wang H Q, Liu H L, Jiao F, Guo Z G, Zhang X T, Hu W P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction[J]. Small, 2020,16(29)2001847. doi: 10.1002/smll.202001847
Zhu M H, Chen J C, Huang L B, Ye R Q, Xu J, Han Y F. Structure-tunable copper-indium catalysts for highly selective CO2 electroreduction to CO or HCOOH[J]. Angew. Chem. Int. Ed., 2019,58(20):6595-6599. doi: 10.1002/anie.201900499
An X W, Li S S, Hao X Q, Xie Z K, Du X, Wang Z D, Hao X G, Abudula A, Guan G Q. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate[J]. Renew. Sust. Energ. Rev., 2021,143110952. doi: 10.1016/j.rser.2021.110952
Sun X L, Wang Q L, Liu Y Y, Zhang J J. Facile synthesis and composition-tuning of bimetallic PbCd nanoparticles as superior CO2-to-HCOOH electrocatalysts[J]. Int. J. Energ. Res., 2022,46(12):17015-17028. doi: 10.1002/er.8365
Liang S Y, Huang L, Gao Y S, Wang Q, Liu B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism[J]. Adv. Sci., 2021,8(24)2102886. doi: 10.1002/advs.202102886
Wang W B, Lu R Q, Xiao X X, Gong S H, Sam D K, Liu B, Lv X M. CuAg nanoparticle/carbon aerogel for electrochemical CO2 reduction[J]. New J. Chem., 2021,45:18290-18295. doi: 10.1039/D1NJ03540A
Wang W B, Gong S H, Liu J, Ge Y, Wang J, Lv X M. Ag-Cu aerogel for electrochemical CO2 conversion to CO[J]. J. Colloid Interface Sci., 2021,595:159-167. doi: 10.1016/j.jcis.2021.03.120
Gong S H, Wang W B, Lu R Q, Zhu M H, Wang H T, Zhang Y, Xie J M, Wu C D, Liu J, Li M X, Shao S Y, Zhu G S, Lv X M. Mediating heterogenized nickel phthalocyanine into isolated Ni-N3 moiety for improving activity and stability of electrocatalytic CO2 reduction[J]. Appl. Catal. B-Environ., 2022,318121813. doi: 10.1016/j.apcatb.2022.121813
Gong S H, Wang W B, Zhang C N, Zhu M H, Lu R Q, Ye J J, Yang H, Wu C D, Liu J, Rao D W, Shao S Y, Lv X M. Tuning the metal electronic structure of anchored cobalt phthalocyanine via dual-regulator for efficient CO2 electroreduction and Zn-CO2 batteries[J]. Adv. Funct. Mater., 2022,32(17)2110649. doi: 10.1002/adfm.202110649
Gong S H, Wang W B, Xiao X X, Liu J, Wu C D, Lv X M. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion[J]. Nano Energy, 2021,84105904. doi: 10.1016/j.nanoen.2021.105904
Wang Y F, Li Y X, Wang Z Y, Allan P, Zhang F C, Lu Z G. Reticular chemistry in electrochemical carbon dioxide reduction[J]. Sci. China Mater., 2020,63(7):1113-1141. doi: 10.1007/s40843-020-1304-3
Kim M J, Xin R J, Earnshaw J, Tang J, Hill J P, Ashok A, Nanjundan A K, Kim J H, Young C, Sugahara Y, Na J, Yamauchi Y. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures[J]. Nat. Protoc., 2022,17(12):2990-3027. doi: 10.1038/s41596-022-00718-2
Venna S R, Jasinski J B, Carreon M A. Structural evolution of zeolitic imidazolate framework-8[J]. J. Am. Chem. Soc., 2010,132(51):18030-18033. doi: 10.1021/ja109268m
Li S C, Hu B C, Shang L M, Ma T, Li C, Liang H W, Yu S H. General synthesis and solution processing of metal-organic framework nanofibers[J]. Adv. Mater., 2022,34(29)2202504. doi: 10.1002/adma.202202504
Jadhav H S, Bandal H A, Ramakrishna S, Kim H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting[J]. Adv. Mater., 2022,34(11)2107072. doi: 10.1002/adma.202107072
Fan X X, Zhou J W, Wang T, Zheng J, Li X G. Opposite particle size effects on the adsorption kinetics of ZIF-8 for gaseous and solution adsorbates[J]. RSC Adv., 2015,5(72):58595-58599. doi: 10.1039/C5RA09981A
Ahmad A, lqbal N, Noor T, Hassan A, Khan U A, Wahab A, Raza M A, Ashraf S. Cu-doped zeolite imidazole framework (ZIF-8) for effective electrocatalytic CO2 reduction[J]. J. CO2 Util., 2021,48101523. doi: 10.1016/j.jcou.2021.101523
Guan Y Y, Liu Y Y, Yi J, Zhang J J. Zeolitic imidazolate framework-derived composites with SnO2 and ZnO phase components for electrocatalytic carbon dioxide reduction[J]. Dalton Trans., 2022,51(18):7274-7283. doi: 10.1039/D2DT00906D
Dou S, Song J J, Xi S B, Du Y H, Wang J, Huang Z F, Xu Z C, Wang X. Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping[J]. Angew. Chem. Int. Ed., 2019,58(12):4041-4045. doi: 10.1002/anie.201814711
Jiang X L, Li H B, Xiao J P, Gao D F, Si R, Yang F, Li Y S, Wang G X, Bao X H. Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(Ⅱ) center in ZIFs[J]. Nano Energy, 2018,52:345-350. doi: 10.1016/j.nanoen.2018.07.047
Yang F, Xie J H, Liu X Q, Wang G Z, Lu X H. Linker defects triggering boosted oxygen reduction activity of Co/Zn-ZIF nanosheet arrays for rechargeable Zn-Air batteries[J]. Small, 2021,17(3)2007085. doi: 10.1002/smll.202007085
Yang Y, Ge L, Rudolph V, Zhu Z H. In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption[J]. Dalton Trans., 2014,43(19):7028-7036. doi: 10.1039/c3dt53191k
Xiang Z H, Hu Z, Cao D P, Yang W T, Lu J M, Han B Y, Wang W C. Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping[J]. Angew. Chem. Int. Ed., 2011,50(2):491-494. doi: 10.1002/anie.201004537
LIU M M, LÜ W M, SHI X F, FAN B B, LI R F. Characterization and catalytic performence of zeolitic imidazolate framework-8 (ZIF-8) synthesized by different methods[J]. Chinese J. Inorg. Chem., 2014,30(3):579-584.
Ren G S, Dai T F, Tang Y, Su Z H, Xu N, Du W C, Dai C Y, Ma X X. Preparation of hydrophobic three-dimensional hierarchical porous zinc oxide for the promotion of electrochemical CO2 reduction[J]. J. CO2 Util., 2022,65102256. doi: 10.1016/j.jcou.2022.102256
Li J C, Meng Y, Zhang L L, Li G Z, Shi Z C, Hou P X, Liu C, Cheng H M, Shao M H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-Air batteries[J]. Adv. Funct. Mater., 2021,312103360. doi: 10.1002/adfm.202103360
Cho J H, Lee C, Hong S H, Jang H Y, Back S, Seo M, Lee M, Min H K, Choi Y, Jang Y J, Ahn S H, Jang H W, Kim S Y. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction[J]. Adv. Mater., 20222208224.
Abdlraouf S M, Shahram G, Hamid G R. A novel sensor based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for efficient electrocatalytic oxidation and trace level detection of hydrazine[J]. Sens. Actuator B-Chem., 2015,220:627-633. doi: 10.1016/j.snb.2015.05.127
Moore E C, Ciccotto P J, Peterson E N, Lamm M S, Albertson R C, Roberts R B. Polygenic sex determination produces modular sex polymorphism in an African cichlid fish[J]. Proc. Natl. Acad. Sci. U.S.A., 2022,119(14)2118574119. doi: 10.1073/pnas.2118574119
Luo Y H, Liu J, Dong L Z, Li S L, Lan Y Q. From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure[J]. Coord. Chem. Rev., 2019,390:86-126. doi: 10.1016/j.ccr.2019.03.019
Yang C H, Li S Y, Zhang Z C, Wang H Q, Liu H L, Jiao F, Guo Z G, Zhang X T, Hu W P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction[J]. Small, 2020,16(29)2001847. doi: 10.1002/smll.202001847
Zhu M H, Chen J C, Huang L B, Ye R Q, Xu J, Han Y F. Structure-tunable copper-indium catalysts for highly selective CO2 electroreduction to CO or HCOOH[J]. Angew. Chem. Int. Ed., 2019,58(20):6595-6599. doi: 10.1002/anie.201900499
An X W, Li S S, Hao X Q, Xie Z K, Du X, Wang Z D, Hao X G, Abudula A, Guan G Q. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate[J]. Renew. Sust. Energ. Rev., 2021,143110952. doi: 10.1016/j.rser.2021.110952
Sun X L, Wang Q L, Liu Y Y, Zhang J J. Facile synthesis and composition-tuning of bimetallic PbCd nanoparticles as superior CO2-to-HCOOH electrocatalysts[J]. Int. J. Energ. Res., 2022,46(12):17015-17028. doi: 10.1002/er.8365
Liang S Y, Huang L, Gao Y S, Wang Q, Liu B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism[J]. Adv. Sci., 2021,8(24)2102886. doi: 10.1002/advs.202102886
Wang W B, Lu R Q, Xiao X X, Gong S H, Sam D K, Liu B, Lv X M. CuAg nanoparticle/carbon aerogel for electrochemical CO2 reduction[J]. New J. Chem., 2021,45:18290-18295. doi: 10.1039/D1NJ03540A
Wang W B, Gong S H, Liu J, Ge Y, Wang J, Lv X M. Ag-Cu aerogel for electrochemical CO2 conversion to CO[J]. J. Colloid Interface Sci., 2021,595:159-167. doi: 10.1016/j.jcis.2021.03.120
Gong S H, Wang W B, Lu R Q, Zhu M H, Wang H T, Zhang Y, Xie J M, Wu C D, Liu J, Li M X, Shao S Y, Zhu G S, Lv X M. Mediating heterogenized nickel phthalocyanine into isolated Ni-N3 moiety for improving activity and stability of electrocatalytic CO2 reduction[J]. Appl. Catal. B-Environ., 2022,318121813. doi: 10.1016/j.apcatb.2022.121813
Gong S H, Wang W B, Zhang C N, Zhu M H, Lu R Q, Ye J J, Yang H, Wu C D, Liu J, Rao D W, Shao S Y, Lv X M. Tuning the metal electronic structure of anchored cobalt phthalocyanine via dual-regulator for efficient CO2 electroreduction and Zn-CO2 batteries[J]. Adv. Funct. Mater., 2022,32(17)2110649. doi: 10.1002/adfm.202110649
Gong S H, Wang W B, Xiao X X, Liu J, Wu C D, Lv X M. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion[J]. Nano Energy, 2021,84105904. doi: 10.1016/j.nanoen.2021.105904
Wang Y F, Li Y X, Wang Z Y, Allan P, Zhang F C, Lu Z G. Reticular chemistry in electrochemical carbon dioxide reduction[J]. Sci. China Mater., 2020,63(7):1113-1141. doi: 10.1007/s40843-020-1304-3
Kim M J, Xin R J, Earnshaw J, Tang J, Hill J P, Ashok A, Nanjundan A K, Kim J H, Young C, Sugahara Y, Na J, Yamauchi Y. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures[J]. Nat. Protoc., 2022,17(12):2990-3027. doi: 10.1038/s41596-022-00718-2
Venna S R, Jasinski J B, Carreon M A. Structural evolution of zeolitic imidazolate framework-8[J]. J. Am. Chem. Soc., 2010,132(51):18030-18033. doi: 10.1021/ja109268m
Li S C, Hu B C, Shang L M, Ma T, Li C, Liang H W, Yu S H. General synthesis and solution processing of metal-organic framework nanofibers[J]. Adv. Mater., 2022,34(29)2202504. doi: 10.1002/adma.202202504
Jadhav H S, Bandal H A, Ramakrishna S, Kim H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting[J]. Adv. Mater., 2022,34(11)2107072. doi: 10.1002/adma.202107072
Fan X X, Zhou J W, Wang T, Zheng J, Li X G. Opposite particle size effects on the adsorption kinetics of ZIF-8 for gaseous and solution adsorbates[J]. RSC Adv., 2015,5(72):58595-58599. doi: 10.1039/C5RA09981A
Ahmad A, lqbal N, Noor T, Hassan A, Khan U A, Wahab A, Raza M A, Ashraf S. Cu-doped zeolite imidazole framework (ZIF-8) for effective electrocatalytic CO2 reduction[J]. J. CO2 Util., 2021,48101523. doi: 10.1016/j.jcou.2021.101523
Guan Y Y, Liu Y Y, Yi J, Zhang J J. Zeolitic imidazolate framework-derived composites with SnO2 and ZnO phase components for electrocatalytic carbon dioxide reduction[J]. Dalton Trans., 2022,51(18):7274-7283. doi: 10.1039/D2DT00906D
Dou S, Song J J, Xi S B, Du Y H, Wang J, Huang Z F, Xu Z C, Wang X. Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping[J]. Angew. Chem. Int. Ed., 2019,58(12):4041-4045. doi: 10.1002/anie.201814711
Jiang X L, Li H B, Xiao J P, Gao D F, Si R, Yang F, Li Y S, Wang G X, Bao X H. Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(Ⅱ) center in ZIFs[J]. Nano Energy, 2018,52:345-350. doi: 10.1016/j.nanoen.2018.07.047
Yang F, Xie J H, Liu X Q, Wang G Z, Lu X H. Linker defects triggering boosted oxygen reduction activity of Co/Zn-ZIF nanosheet arrays for rechargeable Zn-Air batteries[J]. Small, 2021,17(3)2007085. doi: 10.1002/smll.202007085
Yang Y, Ge L, Rudolph V, Zhu Z H. In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption[J]. Dalton Trans., 2014,43(19):7028-7036. doi: 10.1039/c3dt53191k
Xiang Z H, Hu Z, Cao D P, Yang W T, Lu J M, Han B Y, Wang W C. Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping[J]. Angew. Chem. Int. Ed., 2011,50(2):491-494. doi: 10.1002/anie.201004537
LIU M M, LÜ W M, SHI X F, FAN B B, LI R F. Characterization and catalytic performence of zeolitic imidazolate framework-8 (ZIF-8) synthesized by different methods[J]. Chinese J. Inorg. Chem., 2014,30(3):579-584.
Ren G S, Dai T F, Tang Y, Su Z H, Xu N, Du W C, Dai C Y, Ma X X. Preparation of hydrophobic three-dimensional hierarchical porous zinc oxide for the promotion of electrochemical CO2 reduction[J]. J. CO2 Util., 2022,65102256. doi: 10.1016/j.jcou.2022.102256
Li J C, Meng Y, Zhang L L, Li G Z, Shi Z C, Hou P X, Liu C, Cheng H M, Shao M H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-Air batteries[J]. Adv. Funct. Mater., 2021,312103360. doi: 10.1002/adfm.202103360
Cho J H, Lee C, Hong S H, Jang H Y, Back S, Seo M, Lee M, Min H K, Choi Y, Jang Y J, Ahn S H, Jang H W, Kim S Y. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction[J]. Adv. Mater., 20222208224.
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102