Citation: Hao-Tian WANG, Shan-He GONG, Wen-Bo WANG, Dong-Dong GE, Xiao-Meng LÜ. Efficient and stable electrocatalytic reduction of CO2 by ZIF-8 composites[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2151-2159. doi: 10.11862/CJIC.2023.177 shu

Efficient and stable electrocatalytic reduction of CO2 by ZIF-8 composites

  • Corresponding author: Xiao-Meng LÜ, laiyangmeng@163.com
  • Received Date: 5 April 2023
    Revised Date: 13 September 2023

Figures(7)

  • Electrocatalytic CO2 reduction reaction (eCO2RR) is still limited by the intrinsic activity and mass transfer of catalysts, resulting in low catalytic activity and high reaction onset potential. Herein, we explored the eCO2RR performance of zeolite imidazole framework (ZIF-8) with different sizes. We took ZIF-8 with a particle size of 50 nm as the research object, and further introduced carbon nanotubes (CNT) as the conductive substrate material. The hierarchical porous structure and hydrophobic interface of ZIF-8-50@CNT were constructed by in-situ growth. The results of eCO2RR experiment showed that the introduction of CNT improved the conductivity of the catalyst, and the optimized composite effectively reduced the onset potential of the reaction. At -1.1 V (versus reversible hydrogen electrode (RHE)), the partial CO current density of ZIF-8-50@CNT was 15.6 mA·cm-2, and the catalyst surface activity of ZIF-8-50@CNT catalyst is increased by 3.5 times that of ZIF-8-50, and the Tafel slope was reduced to 136 mV·dec-1. The selectivity and stability of the product CO were improved, and the Faraday efficiency (FE) of CO remained 80% at -0.9--1.2 V (vs RHE). In the 10 h stability test, the catalyst remained stable. The overall eCO2RR performance of catalyst was enhanced.
  • 加载中
    1. [1]

      Abdlraouf S M, Shahram G, Hamid G R. A novel sensor based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for efficient electrocatalytic oxidation and trace level detection of hydrazine[J]. Sens. Actuator B-Chem., 2015,220:627-633. doi: 10.1016/j.snb.2015.05.127

    2. [2]

      Moore E C, Ciccotto P J, Peterson E N, Lamm M S, Albertson R C, Roberts R B. Polygenic sex determination produces modular sex polymorphism in an African cichlid fish[J]. Proc. Natl. Acad. Sci. U.S.A., 2022,119(14)2118574119. doi: 10.1073/pnas.2118574119

    3. [3]

      Luo Y H, Liu J, Dong L Z, Li S L, Lan Y Q. From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure[J]. Coord. Chem. Rev., 2019,390:86-126. doi: 10.1016/j.ccr.2019.03.019

    4. [4]

      Yang C H, Li S Y, Zhang Z C, Wang H Q, Liu H L, Jiao F, Guo Z G, Zhang X T, Hu W P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction[J]. Small, 2020,16(29)2001847. doi: 10.1002/smll.202001847

    5. [5]

      Zhu M H, Chen J C, Huang L B, Ye R Q, Xu J, Han Y F. Structure-tunable copper-indium catalysts for highly selective CO2 electroreduction to CO or HCOOH[J]. Angew. Chem. Int. Ed., 2019,58(20):6595-6599. doi: 10.1002/anie.201900499

    6. [6]

      An X W, Li S S, Hao X Q, Xie Z K, Du X, Wang Z D, Hao X G, Abudula A, Guan G Q. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate[J]. Renew. Sust. Energ. Rev., 2021,143110952. doi: 10.1016/j.rser.2021.110952

    7. [7]

      Sun X L, Wang Q L, Liu Y Y, Zhang J J. Facile synthesis and composition-tuning of bimetallic PbCd nanoparticles as superior CO2-to-HCOOH electrocatalysts[J]. Int. J. Energ. Res., 2022,46(12):17015-17028. doi: 10.1002/er.8365

    8. [8]

      Liang S Y, Huang L, Gao Y S, Wang Q, Liu B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism[J]. Adv. Sci., 2021,8(24)2102886. doi: 10.1002/advs.202102886

    9. [9]

      Wang W B, Lu R Q, Xiao X X, Gong S H, Sam D K, Liu B, Lv X M. CuAg nanoparticle/carbon aerogel for electrochemical CO2 reduction[J]. New J. Chem., 2021,45:18290-18295. doi: 10.1039/D1NJ03540A

    10. [10]

      Wang W B, Gong S H, Liu J, Ge Y, Wang J, Lv X M. Ag-Cu aerogel for electrochemical CO2 conversion to CO[J]. J. Colloid Interface Sci., 2021,595:159-167. doi: 10.1016/j.jcis.2021.03.120

    11. [11]

      Gong S H, Wang W B, Lu R Q, Zhu M H, Wang H T, Zhang Y, Xie J M, Wu C D, Liu J, Li M X, Shao S Y, Zhu G S, Lv X M. Mediating heterogenized nickel phthalocyanine into isolated Ni-N3 moiety for improving activity and stability of electrocatalytic CO2 reduction[J]. Appl. Catal. B-Environ., 2022,318121813. doi: 10.1016/j.apcatb.2022.121813

    12. [12]

      Gong S H, Wang W B, Zhang C N, Zhu M H, Lu R Q, Ye J J, Yang H, Wu C D, Liu J, Rao D W, Shao S Y, Lv X M. Tuning the metal electronic structure of anchored cobalt phthalocyanine via dual-regulator for efficient CO2 electroreduction and Zn-CO2 batteries[J]. Adv. Funct. Mater., 2022,32(17)2110649. doi: 10.1002/adfm.202110649

    13. [13]

      Gong S H, Wang W B, Xiao X X, Liu J, Wu C D, Lv X M. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion[J]. Nano Energy, 2021,84105904. doi: 10.1016/j.nanoen.2021.105904

    14. [14]

      Wang Y F, Li Y X, Wang Z Y, Allan P, Zhang F C, Lu Z G. Reticular chemistry in electrochemical carbon dioxide reduction[J]. Sci. China Mater., 2020,63(7):1113-1141. doi: 10.1007/s40843-020-1304-3

    15. [15]

      Kim M J, Xin R J, Earnshaw J, Tang J, Hill J P, Ashok A, Nanjundan A K, Kim J H, Young C, Sugahara Y, Na J, Yamauchi Y. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures[J]. Nat. Protoc., 2022,17(12):2990-3027. doi: 10.1038/s41596-022-00718-2

    16. [16]

      Venna S R, Jasinski J B, Carreon M A. Structural evolution of zeolitic imidazolate framework-8[J]. J. Am. Chem. Soc., 2010,132(51):18030-18033. doi: 10.1021/ja109268m

    17. [17]

      Li S C, Hu B C, Shang L M, Ma T, Li C, Liang H W, Yu S H. General synthesis and solution processing of metal-organic framework nanofibers[J]. Adv. Mater., 2022,34(29)2202504. doi: 10.1002/adma.202202504

    18. [18]

      Jadhav H S, Bandal H A, Ramakrishna S, Kim H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting[J]. Adv. Mater., 2022,34(11)2107072. doi: 10.1002/adma.202107072

    19. [19]

      Fan X X, Zhou J W, Wang T, Zheng J, Li X G. Opposite particle size effects on the adsorption kinetics of ZIF-8 for gaseous and solution adsorbates[J]. RSC Adv., 2015,5(72):58595-58599. doi: 10.1039/C5RA09981A

    20. [20]

      Ahmad A, lqbal N, Noor T, Hassan A, Khan U A, Wahab A, Raza M A, Ashraf S. Cu-doped zeolite imidazole framework (ZIF-8) for effective electrocatalytic CO2 reduction[J]. J. CO2 Util., 2021,48101523. doi: 10.1016/j.jcou.2021.101523

    21. [21]

      Guan Y Y, Liu Y Y, Yi J, Zhang J J. Zeolitic imidazolate framework-derived composites with SnO2 and ZnO phase components for electrocatalytic carbon dioxide reduction[J]. Dalton Trans., 2022,51(18):7274-7283. doi: 10.1039/D2DT00906D

    22. [22]

      Dou S, Song J J, Xi S B, Du Y H, Wang J, Huang Z F, Xu Z C, Wang X. Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping[J]. Angew. Chem. Int. Ed., 2019,58(12):4041-4045. doi: 10.1002/anie.201814711

    23. [23]

      Jiang X L, Li H B, Xiao J P, Gao D F, Si R, Yang F, Li Y S, Wang G X, Bao X H. Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(Ⅱ) center in ZIFs[J]. Nano Energy, 2018,52:345-350. doi: 10.1016/j.nanoen.2018.07.047

    24. [24]

      Yang F, Xie J H, Liu X Q, Wang G Z, Lu X H. Linker defects triggering boosted oxygen reduction activity of Co/Zn-ZIF nanosheet arrays for rechargeable Zn-Air batteries[J]. Small, 2021,17(3)2007085. doi: 10.1002/smll.202007085

    25. [25]

      Yang Y, Ge L, Rudolph V, Zhu Z H. In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption[J]. Dalton Trans., 2014,43(19):7028-7036. doi: 10.1039/c3dt53191k

    26. [26]

      Xiang Z H, Hu Z, Cao D P, Yang W T, Lu J M, Han B Y, Wang W C. Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping[J]. Angew. Chem. Int. Ed., 2011,50(2):491-494. doi: 10.1002/anie.201004537

    27. [27]

      LIU M M, LÜ W M, SHI X F, FAN B B, LI R F. Characterization and catalytic performence of zeolitic imidazolate framework-8 (ZIF-8) synthesized by different methods[J]. Chinese J. Inorg. Chem., 2014,30(3):579-584.  

    28. [28]

      Ren G S, Dai T F, Tang Y, Su Z H, Xu N, Du W C, Dai C Y, Ma X X. Preparation of hydrophobic three-dimensional hierarchical porous zinc oxide for the promotion of electrochemical CO2 reduction[J]. J. CO2 Util., 2022,65102256. doi: 10.1016/j.jcou.2022.102256

    29. [29]

      Li J C, Meng Y, Zhang L L, Li G Z, Shi Z C, Hou P X, Liu C, Cheng H M, Shao M H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-Air batteries[J]. Adv. Funct. Mater., 2021,312103360. doi: 10.1002/adfm.202103360

    30. [30]

      Cho J H, Lee C, Hong S H, Jang H Y, Back S, Seo M, Lee M, Min H K, Choi Y, Jang Y J, Ahn S H, Jang H W, Kim S Y. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction[J]. Adv. Mater., 20222208224.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(12)
  • Abstract views(675)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return