Citation: Hao-Tian WANG, Shan-He GONG, Wen-Bo WANG, Dong-Dong GE, Xiao-Meng LÜ. Efficient and stable electrocatalytic reduction of CO2 by ZIF-8 composites[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2151-2159. doi: 10.11862/CJIC.2023.177 shu

Efficient and stable electrocatalytic reduction of CO2 by ZIF-8 composites

  • Corresponding author: Xiao-Meng LÜ, laiyangmeng@163.com
  • Received Date: 5 April 2023
    Revised Date: 13 September 2023

Figures(7)

  • Electrocatalytic CO2 reduction reaction (eCO2RR) is still limited by the intrinsic activity and mass transfer of catalysts, resulting in low catalytic activity and high reaction onset potential. Herein, we explored the eCO2RR performance of zeolite imidazole framework (ZIF-8) with different sizes. We took ZIF-8 with a particle size of 50 nm as the research object, and further introduced carbon nanotubes (CNT) as the conductive substrate material. The hierarchical porous structure and hydrophobic interface of ZIF-8-50@CNT were constructed by in-situ growth. The results of eCO2RR experiment showed that the introduction of CNT improved the conductivity of the catalyst, and the optimized composite effectively reduced the onset potential of the reaction. At -1.1 V (versus reversible hydrogen electrode (RHE)), the partial CO current density of ZIF-8-50@CNT was 15.6 mA·cm-2, and the catalyst surface activity of ZIF-8-50@CNT catalyst is increased by 3.5 times that of ZIF-8-50, and the Tafel slope was reduced to 136 mV·dec-1. The selectivity and stability of the product CO were improved, and the Faraday efficiency (FE) of CO remained 80% at -0.9--1.2 V (vs RHE). In the 10 h stability test, the catalyst remained stable. The overall eCO2RR performance of catalyst was enhanced.
  • 加载中
    1. [1]

      Abdlraouf S M, Shahram G, Hamid G R. A novel sensor based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for efficient electrocatalytic oxidation and trace level detection of hydrazine[J]. Sens. Actuator B-Chem., 2015,220:627-633. doi: 10.1016/j.snb.2015.05.127

    2. [2]

      Moore E C, Ciccotto P J, Peterson E N, Lamm M S, Albertson R C, Roberts R B. Polygenic sex determination produces modular sex polymorphism in an African cichlid fish[J]. Proc. Natl. Acad. Sci. U.S.A., 2022,119(14)2118574119. doi: 10.1073/pnas.2118574119

    3. [3]

      Luo Y H, Liu J, Dong L Z, Li S L, Lan Y Q. From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure[J]. Coord. Chem. Rev., 2019,390:86-126. doi: 10.1016/j.ccr.2019.03.019

    4. [4]

      Yang C H, Li S Y, Zhang Z C, Wang H Q, Liu H L, Jiao F, Guo Z G, Zhang X T, Hu W P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction[J]. Small, 2020,16(29)2001847. doi: 10.1002/smll.202001847

    5. [5]

      Zhu M H, Chen J C, Huang L B, Ye R Q, Xu J, Han Y F. Structure-tunable copper-indium catalysts for highly selective CO2 electroreduction to CO or HCOOH[J]. Angew. Chem. Int. Ed., 2019,58(20):6595-6599. doi: 10.1002/anie.201900499

    6. [6]

      An X W, Li S S, Hao X Q, Xie Z K, Du X, Wang Z D, Hao X G, Abudula A, Guan G Q. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate[J]. Renew. Sust. Energ. Rev., 2021,143110952. doi: 10.1016/j.rser.2021.110952

    7. [7]

      Sun X L, Wang Q L, Liu Y Y, Zhang J J. Facile synthesis and composition-tuning of bimetallic PbCd nanoparticles as superior CO2-to-HCOOH electrocatalysts[J]. Int. J. Energ. Res., 2022,46(12):17015-17028. doi: 10.1002/er.8365

    8. [8]

      Liang S Y, Huang L, Gao Y S, Wang Q, Liu B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism[J]. Adv. Sci., 2021,8(24)2102886. doi: 10.1002/advs.202102886

    9. [9]

      Wang W B, Lu R Q, Xiao X X, Gong S H, Sam D K, Liu B, Lv X M. CuAg nanoparticle/carbon aerogel for electrochemical CO2 reduction[J]. New J. Chem., 2021,45:18290-18295. doi: 10.1039/D1NJ03540A

    10. [10]

      Wang W B, Gong S H, Liu J, Ge Y, Wang J, Lv X M. Ag-Cu aerogel for electrochemical CO2 conversion to CO[J]. J. Colloid Interface Sci., 2021,595:159-167. doi: 10.1016/j.jcis.2021.03.120

    11. [11]

      Gong S H, Wang W B, Lu R Q, Zhu M H, Wang H T, Zhang Y, Xie J M, Wu C D, Liu J, Li M X, Shao S Y, Zhu G S, Lv X M. Mediating heterogenized nickel phthalocyanine into isolated Ni-N3 moiety for improving activity and stability of electrocatalytic CO2 reduction[J]. Appl. Catal. B-Environ., 2022,318121813. doi: 10.1016/j.apcatb.2022.121813

    12. [12]

      Gong S H, Wang W B, Zhang C N, Zhu M H, Lu R Q, Ye J J, Yang H, Wu C D, Liu J, Rao D W, Shao S Y, Lv X M. Tuning the metal electronic structure of anchored cobalt phthalocyanine via dual-regulator for efficient CO2 electroreduction and Zn-CO2 batteries[J]. Adv. Funct. Mater., 2022,32(17)2110649. doi: 10.1002/adfm.202110649

    13. [13]

      Gong S H, Wang W B, Xiao X X, Liu J, Wu C D, Lv X M. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion[J]. Nano Energy, 2021,84105904. doi: 10.1016/j.nanoen.2021.105904

    14. [14]

      Wang Y F, Li Y X, Wang Z Y, Allan P, Zhang F C, Lu Z G. Reticular chemistry in electrochemical carbon dioxide reduction[J]. Sci. China Mater., 2020,63(7):1113-1141. doi: 10.1007/s40843-020-1304-3

    15. [15]

      Kim M J, Xin R J, Earnshaw J, Tang J, Hill J P, Ashok A, Nanjundan A K, Kim J H, Young C, Sugahara Y, Na J, Yamauchi Y. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures[J]. Nat. Protoc., 2022,17(12):2990-3027. doi: 10.1038/s41596-022-00718-2

    16. [16]

      Venna S R, Jasinski J B, Carreon M A. Structural evolution of zeolitic imidazolate framework-8[J]. J. Am. Chem. Soc., 2010,132(51):18030-18033. doi: 10.1021/ja109268m

    17. [17]

      Li S C, Hu B C, Shang L M, Ma T, Li C, Liang H W, Yu S H. General synthesis and solution processing of metal-organic framework nanofibers[J]. Adv. Mater., 2022,34(29)2202504. doi: 10.1002/adma.202202504

    18. [18]

      Jadhav H S, Bandal H A, Ramakrishna S, Kim H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting[J]. Adv. Mater., 2022,34(11)2107072. doi: 10.1002/adma.202107072

    19. [19]

      Fan X X, Zhou J W, Wang T, Zheng J, Li X G. Opposite particle size effects on the adsorption kinetics of ZIF-8 for gaseous and solution adsorbates[J]. RSC Adv., 2015,5(72):58595-58599. doi: 10.1039/C5RA09981A

    20. [20]

      Ahmad A, lqbal N, Noor T, Hassan A, Khan U A, Wahab A, Raza M A, Ashraf S. Cu-doped zeolite imidazole framework (ZIF-8) for effective electrocatalytic CO2 reduction[J]. J. CO2 Util., 2021,48101523. doi: 10.1016/j.jcou.2021.101523

    21. [21]

      Guan Y Y, Liu Y Y, Yi J, Zhang J J. Zeolitic imidazolate framework-derived composites with SnO2 and ZnO phase components for electrocatalytic carbon dioxide reduction[J]. Dalton Trans., 2022,51(18):7274-7283. doi: 10.1039/D2DT00906D

    22. [22]

      Dou S, Song J J, Xi S B, Du Y H, Wang J, Huang Z F, Xu Z C, Wang X. Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping[J]. Angew. Chem. Int. Ed., 2019,58(12):4041-4045. doi: 10.1002/anie.201814711

    23. [23]

      Jiang X L, Li H B, Xiao J P, Gao D F, Si R, Yang F, Li Y S, Wang G X, Bao X H. Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(Ⅱ) center in ZIFs[J]. Nano Energy, 2018,52:345-350. doi: 10.1016/j.nanoen.2018.07.047

    24. [24]

      Yang F, Xie J H, Liu X Q, Wang G Z, Lu X H. Linker defects triggering boosted oxygen reduction activity of Co/Zn-ZIF nanosheet arrays for rechargeable Zn-Air batteries[J]. Small, 2021,17(3)2007085. doi: 10.1002/smll.202007085

    25. [25]

      Yang Y, Ge L, Rudolph V, Zhu Z H. In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption[J]. Dalton Trans., 2014,43(19):7028-7036. doi: 10.1039/c3dt53191k

    26. [26]

      Xiang Z H, Hu Z, Cao D P, Yang W T, Lu J M, Han B Y, Wang W C. Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping[J]. Angew. Chem. Int. Ed., 2011,50(2):491-494. doi: 10.1002/anie.201004537

    27. [27]

      LIU M M, LÜ W M, SHI X F, FAN B B, LI R F. Characterization and catalytic performence of zeolitic imidazolate framework-8 (ZIF-8) synthesized by different methods[J]. Chinese J. Inorg. Chem., 2014,30(3):579-584.  

    28. [28]

      Ren G S, Dai T F, Tang Y, Su Z H, Xu N, Du W C, Dai C Y, Ma X X. Preparation of hydrophobic three-dimensional hierarchical porous zinc oxide for the promotion of electrochemical CO2 reduction[J]. J. CO2 Util., 2022,65102256. doi: 10.1016/j.jcou.2022.102256

    29. [29]

      Li J C, Meng Y, Zhang L L, Li G Z, Shi Z C, Hou P X, Liu C, Cheng H M, Shao M H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-Air batteries[J]. Adv. Funct. Mater., 2021,312103360. doi: 10.1002/adfm.202103360

    30. [30]

      Cho J H, Lee C, Hong S H, Jang H Y, Back S, Seo M, Lee M, Min H K, Choi Y, Jang Y J, Ahn S H, Jang H W, Kim S Y. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction[J]. Adv. Mater., 20222208224.

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    9. [9]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    13. [13]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    14. [14]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    15. [15]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    16. [16]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    18. [18]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(17)
  • Abstract views(1801)
  • HTML views(591)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return