Citation: Cai-Li WANG, Bo-Yong YE, Han WANG, Song-Lin WANG, Lei YANG, Zhao-Yin HOU. Preparation and application in the hydrogenation of dimethyl terephthalate of Ru@G-CS catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2091-2102. doi: 10.11862/CJIC.2023.174 shu

Preparation and application in the hydrogenation of dimethyl terephthalate of Ru@G-CS catalyst

  • Corresponding author: Zhao-Yin HOU, zyhou@zju.edu.cn
  • Received Date: 20 May 2023
    Revised Date: 17 September 2023

Figures(14)

  • A series of nitrogen-doped graphene-coated Ru-based catalysts (Ru@G-CS) were prepared using glucose, melamine, and RuCl3 as raw materials in a facile one-step pyrolysis method at 700℃ with a varied mass ratio of glucose/melamine in feed. The composition, structure, and surface morphology of these catalysts were characterized with powder X-ray diffraction, Raman spectroscopy, N2 adsorption-desorption, X-ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscope. Characterization results showed that nitrogen in the graphene skeleton can promote the dispersion of Ru, and there was also a strong interaction between nitrogen and loaded Ru. Ru@G-CS(1:4) catalyst (with the mass ratio of glucose/melamine in feed was 1:4) possesses the highest surface area (429 m2·g-1), biggest pore volume (0.45 cm3·g-1) and highly dispersed Ru particles (about 1 nm) that encapsulated in 1-2 layered graphene film. At the same time, the detected wRu0/wRu4 + (73.6/26.4), ID/IG (1.30) and I2D/IG (0.32) reached their maximum in Ru@G-CS(1:4). These catalysts were tested in dimethyl terephthalate (DMT) hydrogenation to 1,4-cyclohexane dimethyl dicarboxylate (DMCD) under mild conditions and compared with those traditional carriers (HZSM-5, Al2O3, MgO, ZnO) supported Ru catalysts. Ru@G-CS(1:4) exhibited high activity and stability at 160℃, 2.5 MPa H2, mDMT/mRu=833, the detected conversion of DMT reached 100% and the selectivity of DMCD remained higher than 98.5% within 4 h. The calculated turnover frequency of each Ru was 233.4 h-1. More importantly, Ru@G-CS(1:4) could maintain its performance at least in 10 cycles. It was concluded that the electron-structure synergistic effect might be the main reason for the excellent activity and stability of Ru@G-CS(1:4).
  • 加载中
    1. [1]

      Martín A J, Mondelli C, Jaydev S D, Pérez-Ramírez J. Catalytic processing of plastic waste on the rise[J]. Chem, 2021,7(6):1487-1533. doi: 10.1016/j.chempr.2020.12.006

    2. [2]

      Ellis L D, Rorrer N A, Sullivan K P, Otto M, McGeehan J E, Román-Leshkov Y, Wierckx N, Beckham G T. Chemical and biological catalysis for plastics recycling and upcycling[J]. Nat. Catal., 2021,4(7):539-556. doi: 10.1038/s41929-021-00648-4

    3. [3]

      Kakadellis S, Rosetto G. Achieving a circular bioeconomy for plastics[J]. Science, 2021,373(6550):49-50. doi: 10.1126/science.abj3476

    4. [4]

      Borrelle S B, Ringma J, Law K L, Cole C M, Laurent L, Alexis M, Erin M, Jenna J, George H L, Michelle A H, Marcus E, Hugh P P, Hannah D F, Leah R G, Beth P, Akbar T, Miranda B, Nicholas M, Megan B, Chelsea M R. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution[J]. Science, 2020,369(6510):1515-1518. doi: 10.1126/science.aba3656

    5. [5]

      Jie X Y, Li W S, Slocombe D, Gao Y, Banerjee I, Gonzalez C S, Yao B Z, AlMegren H, Alshihri S, Dilworth J, Thomas J, Xiao T C, Edwards P. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons[J]. Nat. Catal., 2020,3(11):902-912. doi: 10.1038/s41929-020-00518-5

    6. [6]

      Lee S S, Yee A F. Temperature-dependent transition of deformation mode in poly(1,4-cyclohexylenedimethylene terephthalate)/poly(ethylene terephthalate) copolymers[J]. Macromolecules, 2003,36(18):6791-6796. doi: 10.1021/ma034660a

    7. [7]

      Colonna M, Berti C, Binassi E, Celli A, Fiorini M, Marchese P, Messori M, Brunelle D J. Poly(1,4-cyclohexylenedimethylene-1,4-cyclohexanedicarboxylate): Analysis of parameters affecting polymerization and cis-trans isomerization[J]. Polym. Int., 2011,60(11):1607-1613. doi: 10.1002/pi.3128

    8. [8]

      Li Y W, Wang M, Liu X W, Hu C Q, Xiao D Q, Ma D. Catalytic transformation of PET and CO2 into high-value chemicals[J]. Angew. Chem. Int. Ed., 2022,134(10)e202117205. doi: 10.1002/ange.202117205

    9. [9]

      Shou H G, Jia K., Zhou X, Gao L Q, He X H, Zhou X F, Zhang D W, Liu X B.. Large scale synthesis of an amorphous polyester elastomer with tunable mechanoluminescence and preliminary application in optical strain sensing[J]. J. Mater. Chem. C, 2017,5(17):4134-4138. doi: 10.1039/C7TC00433H

    10. [10]

      Turner S R. Development of amorphous copolyesters based on 1,4-cyclohexanedimethanol[J]. J. Polym. Sci. Part A: Polym. Chem., 2004,42(23):5847-5852. doi: 10.1002/pola.20460

    11. [11]

      Wu X Y, Bruyn M D, Hulan J M, Brasil H, Sun Z H, Barta K. High yield production of 1,4-cyclohexanediol and 1,4-cyclohexanediamine from high molecular-weight lignin oil[J]. Green Chem., 2023,25(1):211-220. doi: 10.1039/D2GC03777G

    12. [12]

      Zhang F A, Chen J L, Chen P, Sun Z Y, Xu S L. Pd nanoparticles supported on hydrotalcite-modified porous alumina spheres as selective hydrogenation catalyst[J]. AIChE J., 2012,58(6):1853-1861. doi: 10.1002/aic.12694

    13. [13]

      Xiao X X, Xin H Y, Qi Y Y, Zhao C, Wu P, Li X H. One-pot conversion of dimethyl terephthalate to 1,4-cyclohexanedimethanol[J]. Appl. Catal. A-Gen., 2022,632118510. doi: 10.1016/j.apcata.2022.118510

    14. [14]

      Yu W, Bhattacharjee S, Lu W Y, Tan C S. Synthesis of Al-modified SBA-15-supported Ru catalysts by chemical fluid deposition for hydrogenation of dimethyl terephthalate in water[J]. ACS Sustainable Chem. Eng., 2020,8(10):4058-4068. doi: 10.1021/acssuschemeng.9b05634

    15. [15]

      Chen J L, Liu X, Zhang F Z. Composition regulation of bimetallic RuPd catalysts supported on porous alumina spheres for selective hydrogenation[J]. Chem. Eng. J., 2015,259:43-52. doi: 10.1016/j.cej.2014.07.049

    16. [16]

      Fan Q N, Li X F, Yang Z X, Han J J, Xu S L, Zhang F Z. Double-confined nickel nanocatalyst derived from layered double hydroxide precursor: Atomic scale insight into microstructure evolution[J]. Chem. Mater., 2016,28(17):6296-6304. doi: 10.1021/acs.chemmater.6b02553

    17. [17]

      Gustafson B L, Guo Y J, Tennant B A. Low pressure process for the hydrogenation of dimethyl benzenedicarboxylates to the corresponding dimethyl cyclohexanedicarboxylates: EP0703894. 1998-08-26.

    18. [18]

      WANG X H, XIN J N, MA Y H, ZHANG P, WANG Y, LÜ L H. Synthesis of dimethyl 1,4-cyclohexanedicarboxylate by low pressure hydrogenation of dimethyl terephthalate[J]. Petrochemical Technology, 2007,36(5):433-436.  

    19. [19]

      SONG G Q, DU W B, CAO Y M. A preparation method of dimethyl cyclohexane dicarboxylate: CN1308052A. 2001-08-15.

    20. [20]

      LU C S, LIU Q Q, NIE J J, ZHANG X J, ZHOU Y B, ZHAO J, FENG F, MA L, ZHANG Q F, GUO L L, XU X L, LÜ J H, CEN J, LI X N. Preparation of supported ruthenium hydrogenation catalyst and its application in catalytic hydrogenation of dimethyl terephthalate: CN109701522B. 2021-06-08.

    21. [21]

      Li X F, Sun Z Y, Chen J L, Zhu Y, Zhang F Z. One-pot conversion of dimethyl terephthalate into 1,4-cyclohexanedimethanol with supported trimetallic RuPtSn catalysts[J]. Ind. Eng. Chem. Res., 2014,53(2):619-625. doi: 10.1021/ie402987c

    22. [22]

      Huang Y Q, Ma Y, Cheng Y W, Wang L J, Li X. Dimethyl terephthalate hydrogenation to dimethyl cyclohexanedicarboxylates over bimetallic catalysts on carbon nanotubes[J]. Ind. Eng. Chem. Res., 2014,53(12):4604-4613. doi: 10.1021/ie500015m

    23. [23]

      Deng J, Deng D H, Bao X H. Robust catalysis on 2D materials encapsulating metals: concept, application, and perspective[J]. Adv. Mater., 2017,29(43)1606967. doi: 10.1002/adma.201606967

    24. [24]

      Tang L, Meng X G, Deng D H, Bao X H. Confinement catalysis with 2D materials for energy conversion[J]. Adv. Mater., 2019,31(50)1901996. doi: 10.1002/adma.201901996

    25. [25]

      YUAN Q X, CHEN W M, LÜ X R. Effect of one-dimensional/two- dimensional composite carbon support on methanol oxidation performance of Pd catalysts[J]. Chinese J. Inorg. Chem., 2022,38(11):2165-2172.  

    26. [26]

      ZHU S, SHENG J, JIA G D, LIU H D, LI Y. Synthesis and modification of mesoporous carbon nanomaterials[J]. Chinese J. Inorg. Chem., 2022,38(1):1-13.  

    27. [27]

      CAO S Y, CHEN B J, YU F F, XU X W, YAO Y Y. Preparation of MoO2@nitrogen doped carbon composites for degradation of organic pollutants[J]. Chinese J. Inorg. Chem., 2023,39(1):80-90.  

    28. [28]

      Yang H H, Nie R F, Xia W, Yu X L, Jin D F, Lu X H, Zhou D, Xia Q H. Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid[J]. Green Chem., 2017,19(23):5714-5722. doi: 10.1039/C7GC02648J

    29. [29]

      Hu Y, Bai C, Li M, Hojamberdiev M, Geng D S, Li X G. Tailoring atomically dispersed cobalt-nitrogen active sites in wrinkled carbon nanosheets via "fence" isolation for highly sensitive detection of hydrogen peroxide[J]. J. Mater. Chem. A, 2022,10(6):3190-3200. doi: 10.1039/D1TA09645A

    30. [30]

      Deng X D, Zhao B T, Zhu L, Shao Z P. Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors[J]. Carbon., 2015,93:48-58. doi: 10.1016/j.carbon.2015.05.031

    31. [31]

      Barman B K, Sarkar B, Nanda K K. Pd-coated Ru nanocrystals supported on N-doped graphene as HER and ORR electrocatalysts[J]. Chem. Commun., 2019,55(92):13928-13931. doi: 10.1039/C9CC06208D

    32. [32]

      Sun Y Y, Li X W, Cai Z S, Bai H Z, Tang G P, Hou Z Y. Synthesis of 3D N-doped graphene/carbon nanotube hybrids with encapsulated Ni NPs and their catalytic application in the hydrogenation of nitroarenes[J]. Catal. Sci. Technol., 2018,8(19):4858-4863. doi: 10.1039/C8CY01145A

    33. [33]

      Zhang B B, Song J L, Yang G Y, Han B X. Large-scale production of high-quality graphene using glucose and ferric chloride[J]. Chem. Sci., 2014,5(12):4656-4660. doi: 10.1039/C4SC01950D

    34. [34]

      CHANG Y N, LU X Y, MA Z Y, XU D D, LIU Y, BAO J C. Synthesis and hydrazine-assisted overall water splitting performance of Ru nanoclusters/MoOMoO3-x nanobelt bifunctional catalyst[J]. Chinese J. Inorg. Chem., 2022,38(10):2037-2046.  

    35. [35]

      Chen B F, Dong M H, Liu S L, Xie Z B, Yang J J, Li S P, Wang Y Y, Du J, Liu H Z, Han B X. CO2 hydrogenation to formate catalyzed by Ru coordinated with a N, P-containing polymer[J]. ACS Catal., 2020,10(15):8557-8566. doi: 10.1021/acscatal.0c01678

    36. [36]

      Zhao Y F, Li W S, Rehman M U, Wang S P, Li G B, Xu Y. Roles of N on the N-doped Ru/AC catalyst in the hydrogenation of phthalate esters[J]. Res. Chem. Intermed., 2022,48(7):2987-3006. doi: 10.1007/s11164-022-04730-9

    37. [37]

      Shi J J, Zhao M S, Wang Y Y, Fu J, Lu X Y, Hou Z Y. Upgrading of aromatic compounds in bio-oil over ultrathin graphene encapsulated Ru nanoparticles[J]. J. Mater. Chem. A, 2016,4(16):5842-5848. doi: 10.1039/C6TA01317A

    38. [38]

      Wang Y, Ren P J, Hu J T, Tu Y C, Gong Z M, Cui Y Zheng Y P, Chen M S, Zhang W J, Ma C, Yu L, Yang F, Wang Y, Bao X H, Deng D H. Electron penetration triggering interface activity of Pt-graphene for CO oxidation at room temperature[J]. Nat. Commun., 2021,12(1)5814. doi: 10.1038/s41467-021-26089-y

    39. [39]

      Deng J, Ren P J, Deng D H, Bao X H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angew. Chem., 2015,127(7):2128-2132. doi: 10.1002/ange.201409524

    40. [40]

      Sun Y Y, Li X W, Wang J G, Ning W S, Fu J, Lu X Y, Hou Z Y. Carbon film encapsulated Pt NPs for selective oxidation of alcohols in acidic aqueous solution[J]. Appl. Catal. B-Environ., 2017,218(5):538-544.

    41. [41]

      Fu H Q, Huang K T, Yang G G, Cao Y H, Wang H J, Peng F, Wang Q, Yu H. Synergistic effect of nitrogen dopants on carbon nanotubes on the catalytic selective epoxidation of styrene[J]. ACS Catal., 2020,10(1):129-137. doi: 10.1021/acscatal.9b03584

    42. [42]

      He B, Liu F, Yan S K. Temperature-directed growth of highly pyridinic nitrogen doped, graphitized, ultra-hollow carbon frameworks as an efficient electrocatalyst for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2017,5(34):18064-18070. doi: 10.1039/C7TA04685E

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    5. [5]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    14. [14]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    15. [15]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

Metrics
  • PDF Downloads(8)
  • Abstract views(491)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return