Heterogeneous composites with coexisting spin-crossover and long-range magnetic ordering
- Corresponding author: Hai-Yan WEI, weihaiyan@njnu.edu.cn Xin-Yi WANG, wangxy66@nju.edu.cn
Citation:
Gang LI, Xin-Yu ZHANG, Feng-Li CHEN, Cheng-Cheng ZHANG, Bo-Hong GAO, Hai-Yan WEI, Xin-Yi WANG. Heterogeneous composites with coexisting spin-crossover and long-range magnetic ordering[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(11): 2197-2208.
doi:
10.11862/CJIC.2023.173
Kumar K S, Ruben M. Emerging trends in spin crossover (SCO) based functional materials and devices[J]. Coord. Chem. Rev., 2017,346:176-205. doi: 10.1016/j.ccr.2017.03.024
Molnár G, Rat S, Salmon L, Nicolazzi W, Bousseksou A. Spin crossover nanomaterials: From fundamental concepts to devices[J]. Adv. Mater., 2018,30(5)17003862.
Enriquez-Cabrera A, Rapakousiou A, Bello M P, Molnár G, Salmon L, Bousseksou A. Spin crossover polymer composites, polymers and related soft materials[J]. Coord. Chem. Rev., 2020,419213396. doi: 10.1016/j.ccr.2020.213396
Coronado E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices[J]. Nat. Rev. Mater., 2020,5(2):87-104.
Ge J Y, Chen Z Y, Zhang L, Liang X, Su J, Kurmoo M, Zuo J L. A two-dimensional Iron(Ⅱ) coordination polymer with synergetic spin-crossover and luminescent properties[J]. Angew. Chem. Int. Ed., 2019,58(26):1-6.
Nieto-Castro D, Garcés-Pineda F A, Moneo-Corcuera A, Sánchez-Molina I, Galán-Mascarós J R. Mechanochemical processing of highly conducting organic/inorganic composites exhibiting spin crossover-induced memory effect in their transport properties[J]. Adv. Funct. Mater., 2021,31(33)2102469. doi: 10.1002/adfm.202102469
Kühne I A, Ozarowski A, Sultan A, Esien K, Carter A B, Wix P, Casey A, Heerah-Booluck M, Keene T D, Müller-Bunz H, Felton S, Hill S, Morgan G G. Homochiral Mn3+ spin-crossover complexes: A structural and spectroscopic study[J]. Inorg. Chem., 2022,61(8):3458-3471. doi: 10.1021/acs.inorgchem.1c03379
Wen W, Liu Q, Zhang S H, Yao N T, Oshio R O, Meng Y S, Liu T. Spin-crossover tuned rotation of pyrazolyl rings in a 2D Iron(Ⅱ) complex towards synergetic magnetic and dielectric transitions[J]. Angew. Chem. Int. Ed., 2022,61(34)e202208886. doi: 10.1002/anie.202208886
Tissot A, Kesse X, Giannopoulou S, Stenger I, Binet L, Rivière E, Serre C. A spin crossover porous hybrid architecture for potential sensing applications[J]. Chem. Commun., 2019,55(2):194-197. doi: 10.1039/C8CC07573E
Zappe L, Schönfeld S, Hörner G, Zenere K A, Leong C F, Kepert C J, D'Alessandro D M, Weber B, Neville S M. Spin crossover modulation in a coordination polymer with the redox-active bis-pyridyltetrathiafulvalene (py2TTF) ligand[J]. Chem. Commun., 2020,56(72):10469-10472. doi: 10.1039/D0CC03788E
Peng H, Wang D, Ma D S, Zhou Y, Zhang J H, Kang Y J, Yue Q. Multifunctional yolk-shell structured magnetic mesoporous polydopamine/carbon microspheres for photothermal therapy and heterogenous catalysis[J]. ACS Appl. Mater. Interfaces, 2022,14(20):23888-23895. doi: 10.1021/acsami.2c04689
Dey B, Chandrasekhar V. FeⅡ spin crossover complexes containing N4O2 donor ligands[J]. Dalton Trans., 2022,51(37):13995-14021. doi: 10.1039/D2DT01967A
Javed M K, Sulaiman A, Yamashita M, Li Z Y. Shedding light on bifunctional luminescent spin crossover materials[J]. Coord. Chem. Rev., 2022,467214625. doi: 10.1016/j.ccr.2022.214625
Üngör Ö, Choi E S, Shatruk M. Optimization of crystal packing in semiconducting spin-crossover materials with fractionally charged TCNQδ- anions (0 < δ < 1)[J]. Chem. Sci., 2021,12(32):10765-10779. doi: 10.1039/D1SC02843J
Dugay J, Aarts M, Giménez-Marqués M, Kozlova T, Zandbergen H W, Coronado E, van der Zantt H S J. Phase transitions in spin-crossover thin films probed by graphene transport measurements[J]. Nano Lett., 2017,17(1):186-193. doi: 10.1021/acs.nanolett.6b03780
Chen Y C, Meng Y, Ni Z P, Tong M L. Synergistic electrical bistability in a conductive spin crossover heterostructure[J]. J. Mater. Chem. C, 2015,3(5):945-949. doi: 10.1039/C4TC02580F
Wang Y X, Qiu D, Xi S F, Ding Z D, Li Z J, Li Y X, Ren X H, Gu Z G. Iron(Ⅱ)-triazole core-shell nanocomposites: Toward multistep spin crossover materials[J]. Chem. Commun., 2016,52(51):8034-8037. doi: 10.1039/C6CC02334G
Kosaka W, Nomura K, Hashimoto K, Ohkoshi S I. Observation of an Fe(Ⅱ) spin-crossover in a cesium iron hexacyanochromate[J]. J. Am. Chem. Soc., 2005,127(24):8590-8591. doi: 10.1021/ja050118l
Arai M, Kosaka W, Matsuda T, Ohkoshi S I. Observation of an iron(Ⅱ) spin-crossover in an iron octacyanoniobate-based magnet[J]. Angew. Chem. Int. Ed., 2008,47(36):6885-6887. doi: 10.1002/anie.200802266
Clemente-León M, Coronado E, López-Jordà M, Desplanches C, Asthana S, Wang H F, Létard J F. A hybrid magnet with coexistence of ferromagnetism and photoinduced Fe? spin-crossover[J]. Chem. Sci., 2011,2(6):1121-1127. doi: 10.1039/c1sc00015b
Roubeau O, Evangelistia M, Natividad E. A spin crossover ferrous complex with ordered magnetic ferric anions[J]. Chem. Commun., 2012,48(61):7604-7606. doi: 10.1039/c2cc33709f
Abhervé A, Grancha T, Ferrando-Soria J, Clemente-León M, Coronado E, Waerenborgh J C, Lloreta F, Pardo E. Spin-crossover complex encapsulation within a magnetic metal-organic framework[J]. Chem. Commun., 2016,52(46):7360-7363. doi: 10.1039/C6CC03667H
Okubo M, Li C H, Talham D R. High rate sodium ion insertion into core-shell nanoparticles of Prussian blue analogues[J]. Chem. Commun., 2014,50(11):1353-1355. doi: 10.1039/C3CC47607C
Gros C R, Peprah M K, Hosterman B D, Brinzari T V, Quintero P A, Sendova M, Meisel M W, Talham D R. Light-induced magnetization changes in a coordination polymer heterostructure of a Prussian blue analogue and a Hofmann-like Fe(Ⅱ) spin crossover compound[J]. J. Am. Chem. Soc., 2014,136(28):9846-9849. doi: 10.1021/ja504289p
Gros C R, Peprah M K, Felts A C, Brinzari T V, Risset O N, Cain J M, Ferreira C F, Meisel M W, Talham D R. Synergistic photomagnetic effects in coordination polymer heterostructure particles of Hofmann-like Fe(4-phenylpyridine)2[Ni(CN)4]·0.5H2O and K0.4Ni[Cr(CN)6]0.8·nH2O[J]. Dalton Trans., 2016,45(42):16624-16634. doi: 10.1039/C6DT02353C
Herren F, Fisher P, Ludi A, Halg W. Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3·xH2O[J]. Inorg. Chem., 1980,19(4):956-959. doi: 10.1021/ic50206a032
Hu Y, Zhu T S, Guo Z P, Popli H, Malissa H, Huang Y L, An L, Li Z, Armstrong J N, Boehme C, Vardeny Z V, N'Diaye A T, Zhou C, Wuttig M, Grossman J C, Ren S Q. Printing air-stable high-Tc molecular magnet with tunable magnetic interaction[J]. Nano Lett., 2022,22(2):545-553.
Boström H L B, Cairns A B, Liu L, Lazorc P, Collings I E. Spin crossover in the Prussian blue analogue FePt(CN)6 induced by pressure or X-ray irradiation[J]. Dalton Trans., 2020,49(37):12940-12944. doi: 10.1039/D0DT02036B
Glatz J, Jiménez J R, Godeffroy L, von Bardeleben H J, Fillaud L, Maisonhaute E, Li Y L, Chamoreau L M, Lescouëzec R. Enlightening the alkali ion role in the photomagnetic effect of FeCo Prussian blue analogues[J]. J. Am. Chem. Soc., 2022,144(24):10888-10901. doi: 10.1021/jacs.2c03421
Egan L, Kamenev K, Papanikolaou D, Takabayashi Y, Margadonna S. Pressure-induced sequential magnetic pole inversion and antiferromagnetic-ferromagnetic crossover in a trimetallic Prussian blue analogue[J]. J. Am. Chem. Soc., 2006,128(18):6034-6035. doi: 10.1021/ja061514m
Wang W L, Gang Y, Hu Z, Yan Z C, Li W J, Li Y C, Gu Q F, Wang Z X, Chou S L, Liu H K, Dou S X. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries[J]. Nat. Commun., 2020,11(1)980. doi: 10.1038/s41467-020-14444-4
Zhang M, Zhou J, Yu J L, Shi L D, Ji M W, Liu H C, Li D Z, Zhu C Z, Xu J. Mixed analogous heterostructure based on MXene and Prussian blue analog derivative for high-performance flexible energy storage[J]. Chem. Eng. J., 2020,387123170. doi: 10.1016/j.cej.2019.123170
Vega-Moreno J, Lemus-Santana A A, Reguera E, Andrio A, Compañ A. High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates[J]. Electrochim. Acta, 2020,360136959. doi: 10.1016/j.electacta.2020.136959
Boudjema L, Long J, Salles F, Larionova J, Guari Y, Trens P. A switch in the hydrophobic/hydrophilic gas-adsorption character of Prussian blue analogues: An affinity control for smart gas sorption[J]. Chem.-Eur. J., 2019,25(2):479-484. doi: 10.1002/chem.201804730
Lin X J, Cao S F, Chen H Y, Chen X D, Wang Z J, Zhou S N, Xu H, Liu S Y, Wei S X, Lu X Q. Boosting oxygen evolution reaction of hierarchical spongy NiFe-PBA/Ni3C(B) electrocatalyst: Interfacial engineering with matchable structure[J]. Chem. Eng. J., 2022,433133524. doi: 10.1016/j.cej.2021.133524
Guari Y, Cahu M, Felix G, Sene S, Long J, Chopineau J, Devoisselle J M, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its analogues: Design, properties and applications[J]. Coord. Chem. Rev., 2022,461214497. doi: 10.1016/j.ccr.2022.214497
Wu X Y, Ru Y, Bai Y, Zhang G X, Shi Y X, Pang H. PBA composites and their derivatives in energy and environmental applications[J]. Coord. Chem. Rev., 2022,451214260. doi: 10.1016/j.ccr.2021.214260
Qin Z G, Li Y, Gu N. Progress in applications of Prussian blue nanoparticles in biomedicine[J]. Adv. Healthc. Mater., 2018,7(20)1800347. doi: 10.1002/adhm.201800347
He W H, Cain J M, Meisel M W, Talham D R. Interplay between core and shell in a RbCoFe@RbNiCo Prussian blue analogue spin transition heterostructure[J]. J. Mater. Chem. C, 2021,9(33):10830-10840. doi: 10.1039/D1TC01514A
Sanchis-Gual R, Otero T F, Coronado-Puchau M, Coronado E. Enhancing the electrocatalytic activity and stability of Prussian blue analogues by increasing their electroactive sites through the introduction of Au nanoparticles[J]. Nanoscale, 2021,13(29):12676-12686. doi: 10.1039/D1NR02928B
Maurin-Pasturel G, Long J, Guari Y, Godiard F, Willinger M G, Guerin C, Larionova J. Nanosized heterostructures of Au@Prussian blue analogues: Towards multifunctionality at the nanoscale[J]. Angew. Chem. Int. Ed., 2014,53(15):3872-3876. doi: 10.1002/anie.201310443
Cabrera-Garcia A, Checa-Chavarria E, Pacheco-Torres J, Bernabeu-Sanz A, Vidal-Moya A, Rivero-Buceta E, Sastre G, Fernández E, Botella P. Engineered contrast agents in a single structure for T1-T2 dual magnetic resonance imaging[J]. Nanoscale, 2018,10(14):6349-6360. doi: 10.1039/C7NR07948F
Kahn O, Martinez C J. Spin-transition polymers: From molecular materials toward memory devices[J]. Science, 1998,279(5347):44-48. doi: 10.1126/science.279.5347.44
Piedrahita-Bello M, Angulo-Cervera J E, Courson R, Molnár G, Malaquin L, Thibault C, Tondu B, Salmon L, Bousseksou A. 4D printing with spin-crossover polymer composites[J]. J. Mater. Chem. C, 2020,8(18):6001-6005. doi: 10.1039/D0TC01532F
Torres-Cavanillas R, Morant-Giner M, Escorcia-Ariza G, Dugay J, Canet-Ferrer J, Tatay S, Cardona-Serra S, Gimenez-Marques M, Galbiati M, Forment-Aliaga A, Coronado E. Spin-crossover nanoparticles anchored on MoS2 layers for heterostructures with tunable strain driven by thermal or light-induced spin switching[J]. Nat. Chem., 2021,13(11):1101-1109. doi: 10.1038/s41557-021-00795-y
Roubeau O. Triazole-based one-dimensional spin-crossover coordination polymers[J]. Chem.-Eur. J., 2012,18(48):15230-15244. doi: 10.1002/chem.201201647
Tanaka D, Aketa N, Tanaka H, Horike S, Fukumori M, Tamaki T, Inose T, Akai T, Toyama H, Sakata O, Tajiri H, Ogawa T. Facile preparation of hybrid thin films composed of spin-crossover nanoparticles and carbon nanotubes for electrical memory devices[J]. Dalton Trans., 2019,48(21):7074-7079. doi: 10.1039/C8DT02923G
Li Z H, Wang Y X, Han W K, Zhu W, Li T, Li Z J, Ren X H, Gu Z G. Integrating spin-crossover nanoparticles with silver nanowires: Toward magnetic and conductive bifunctional nanomaterials[J]. New J. Chem., 2017,41(18):10062-10068. doi: 10.1039/C7NJ02089A
Palluel M, Tran N M, Daro N, Buffière S, Mornet S, Freysz E, Chastanet G. The interplay between surface plasmon resonance and switching properties in gold@spin crossover nanocomposites[J]. Adv. Funct. Mater., 2020,30(17)2000447. doi: 10.1002/adfm.202000447
Piedrahita-Bello M, Martin B, Salmon L, Molnár G, Demont P, Bousseksou A. Mechano-electric coupling in P(VDF-TrFE)/spin crossover composites[J]. J. Mater. Chem. C, 2020,8(18):6042-6051. doi: 10.1039/D0TC00780C
Gural'skiy I A, Quintero C M, Costa J S, Demont P, Molnár G, Salmon L, Shepherd , H J, Bousseksou A. Spin crossover composite materials for electrothermomechanical actuators[J]. J. Mater. Chem. C, 2014,2(16):2949-2955. doi: 10.1039/C4TC00267A
Manrique-Juárez M D, Mathieu F, Laborde A, Rat S, Shalabaeva V, Demont P, Thomas O, Salmon L, Leichle T, Nicu L, Molnár G, Bousseksou A. Micromachining-compatible, facile fabrication of polymer nanocomposite spin crossover actuators[J]. Adv. Funct. Mater., 2018,28(29)1801970. doi: 10.1002/adfm.201801970
Rat S, Piedrahita-Bello M, Salmon L, Molnár G, Demont P, Bousseksou A. Coupling mechanical and electrical properties in spin crossover polymer composites[J]. Adv. Mater., 2018,30(8)1705275. doi: 10.1002/adma.201705275
Titos-Padilla S, Herrera J M, Chen X W, Delgado J J, Colacio E. Bifunctional hybrid SiO2 nanoparticles showing synergy between core spin crossover and shell luminescence properties[J]. Adv. Mater., 2018,50(14):3290-3293.
Suleimanov I, Kraieva O, Costa J S, Fritsky I O, Molnár G, Salmon L, Bousseksou A. Electronic communication between fluorescent pyrene excimers and spin crossover complexes in nanocomposite particles[J]. J. Mater. Chem. C, 2015,3(19):5026-5032. doi: 10.1039/C5TC00667H
Suleimanov I, Kraieva O, Molnár G, Salmon L, Bousseksou A. Enhanced luminescence stability with a Tb-spin crossover nanocomposite for spin state monitoring[J]. Chem. Commun., 2015,51(82):15098-15101. doi: 10.1039/C5CC06426K
Díaz-Ortega I F, Fernández-Barbosa E L, Titos-Padilla S, Pope S J A, Jiménez J R, Colacio E, Herrera J M. Monitoring spin-crossover phenomena via Re(Ⅰ) luminescence in hybrid Fe(Ⅱ) silica coated nanoparticles[J]. Dalton Trans., 2021,50(44):16176-16184. doi: 10.1039/D1DT03334D
Jia Y, Ji Y G, Xue Q, Li F M, Zhao G T, Jin P J, Li S N, Chen Y. Efficient nitrate-to-ammonia electroreduction at cobalt phosphide nanoshuttles[J]. ACS Appl. Mater. Interfaces, 2021,13(38):45521-45527. doi: 10.1021/acsami.1c12512
Xiao X, Zhang G X, Xu Y X, Zhang H L, Guo X T, Liu Y, Pang H. A new strategy for the controllable growth of MOF@PBA architectures[J]. J. Mater. Chem. A, 2019,7(29):17266-17271. doi: 10.1039/C9TA05409J
Samain L, Grandjean F, Long G J, Martinetto P, Bordet P, Strivay D. Relationship between the synthesis of Prussian blue pigments, their color, physical properties, and their behavior in paint layers[J]. J. Phys. Chem. C, 2013,117(19):9693-9712. doi: 10.1021/jp3111327
Siddiqui S A, Domanov O, Schafler E, Vejpravova J, Shiozawa H. Synthesis and size-dependent spin crossover of coordination polymer [Fe(Htrz)2(trz)](BF4)[J]. J. Mater. Chem. C, 2021,9(3):1077-1084. doi: 10.1039/D0TC03878D
Palluel M, El Khoury L, Daro N, Buffière S, Josse M, Marchivie M, Chastanet G. Rational direct synthesis of [Fe(Htrz)2(trz)](BF4) polymorphs: Temperature and concentration effects[J]. Inorg. Chem. Front., 2021,8(15):3697-3706. doi: 10.1039/D1QI00482D
Mamontova E, Daurat M, Long J, Godefroy A, Salles F, Guari Y, Gary-Bobo M, Larionova J. Fashioning Prussian blue nanoparticles by adsorption of luminophores: Synthesis, properties, and in vitro imaging[J]. Inorg. Chem., 2020,59(7):4567-4575. doi: 10.1021/acs.inorgchem.9b03699
Zhao Z X, Xu S W, Du Z J, Jiang C, Huang X Z. Metal-organic framework-based PB@MoS2 core-shell microcubes with high efficiency and broad bandwidth for microwave absorption performance[J]. ACS Sustainable Chem. Eng., 2019,7(7):7183-7192. doi: 10.1021/acssuschemeng.9b00191
Wu X Y, Qiu S, Xu Y K, Ma L, Bi X X, Yuan Y F, Wu T P, Shahbazian-Yassar R, Lu J, Ji X L. Hydrous nickel-iron Turnbull's blue as a high-rate and low temperature proton electrode[J]. ACS Appl. Mater. Interfaces, 2020,12(8):9201-9208. doi: 10.1021/acsami.9b20320
Zhou P H, Xue D S. Finite-size effect on magnetic properties in Prussian blue nanowire arrays[J]. J. Appl. Phys., 2004,96(1):610-614. doi: 10.1063/1.1737044
Uemura T, Kitagawa S. Prussian blue nanoparticles protected by poly(vinylpyrrolidone)[J]. J. Am. Chem. Soc., 2003,125(26):7814-7815. doi: 10.1021/ja0356582
Kumar B, Paul A, Mondal D J, Paliwal P, Konar S. Spin-state modulation in FeⅡ-based Hofmann-type coordination polymers: From molecules to materials[J]. Chem. Rec., 2022,22(11)e2022001.
Cain J M, He W H, Maurin I, Meisel M W, Talham D R. Stimulus induced strain in spin transition heterostructures[J]. J. Appl. Phys., 2021,129(16)160903. doi: 10.1063/5.0045939
Liu S S, Zhou K, Yuan T L, Lei W R, Chen H Y, Wang X Y, Wang W. Imaging the thermal hysteresis of single spin-crossover nanoparticles[J]. J. Am. Chem. Soc., 2020,142(37):15852-1585. doi: 10.1021/jacs.0c05951
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
Yadan SUN , Xinfeng LI , Qiang LIU , Oshio Hiroki , Yinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131
Shuai Liang , Wen-Jing Jiang , Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430
Mengjia Luo , Yi Qiu , Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446
Di ZHANG , Tianxiang XIE , Xu HE , Wanyu WEI , Qi FAN , Jie QIAO , Gang JIN , Ningbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329
Hongdao LI , Shengjian ZHANG , Hongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Mengyuan Li , Xitong Ren , Yanmei Gao , Mengyao Mu , Shiping Zhu , Shufang Tian , Minghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699
Zhao-Bo Hu , Ling-Ao Gui , Long-He Li , Tong-Tong Xiao , Adam T. Hand , Pagnareach Tin , Mykhaylo Ozerov , Yan Peng , Zhongwen Ouyang , Zhenxing Wang , Zi-Ling Xue , You Song . CoⅡ single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Yanjie Li , Chaoqun Qu , Siqi Meng , Jiaqi Hu , Ze Gao , Hongji Xu , Rui Gao , Ming Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872
Xiaxia LIU , Xiaofang MA , Luxia GUO , Xianda HAN , Sisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269
Xiao-Fang Lv , Xiao-Yun Ran , Yu Zhao , Rui-Rui Zhang , Li-Na Zhang , Jing Shi , Ji-Xuan Xu , Qing-Quan Kong , Xiao-Qi Yu , Kun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
Guang-Xu Duan , Queting Chen , Rui-Rui Shao , Hui-Huang Sun , Tong Yuan , Dong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200
Zhaodong WANG . In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268
Qiuye Wang , Yabing Sun , Liangxue Lai , Haijing Cui , Yonglong Ye , Ming Yang , Weihao Zhu , Bo Yuan , Quanliang Mao , Wenzhi Ren , Aiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212
The average size of PB particles is shown in the figures.