Citation: Hao-Qiang HOU, Li-Fei XU, Zhou XU, Zheng YANG, Wei LI, Chun-Hui MA, Sha LUO, Shou-Xin LIU. Preparation and photocatalytic properties of Cu, N co-doped TiO2 nanotubes for glycerol reforming to syngas[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2103-2112. doi: 10.11862/CJIC.2023.172 shu

Preparation and photocatalytic properties of Cu, N co-doped TiO2 nanotubes for glycerol reforming to syngas

Figures(8)

  • Cu, N co-doped TiO2 nanotubes (Cu/N-TNT) were prepared by alkaline hydrothermal-ion exchange method, and the photocatalytic properties for glycerol reforming to syngas (H2 and CO) were studied. The results show that Cu/N-TNT catalyst has tubular structures with abundant oxygen vacancies (OV). N forms the impurity energy level by substituting the partial O in the form of Ti-N. Cu is doped into the crystal lattice gap and surface of the catalyst in the form of Cu2+. Cu, N co-doping promotes the effective surface charge separation on the TiO2, and improves the photocatalytic activity and selectivity for glycerol reforming to syngas. CO and H2 yields were 7.3 and 8.5 mmol· g-1 on Cu/N-TNT catalyst doped with 0.15% Cu, which were 9.1 and 70.8 times those on the original TiO2. The molar ratio of H2/CO was increased from 0.52 to 1.18, and the molar ratio of CO/CO2 was raised from 0.21 to 0.42 after 8 h of UV irradiation. N and OV on Cu/N-TNT surface provide the active sites for the decarbonylation of aldehydes and dehydration of formic acid to produce CO. Cu acts as the shallow potential traps to inhibit the electron-hole recombination. Photogenerated holes (h+) play vital roles on the syngas generation during the photocatalytic reforming of glycerol, and excessive hydroxyl radical (·OH) and superoxide radical (·O2-) favor the deep oxidation of glycerol and decrease the selectivity of CO.
  • 加载中
    1. [1]

      Chai Z G, Zeng T T, Li Q, Lu L Q, Xiao W J, Xu D S. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst[J]. J. Am. Chem. Soc., 2016,138(32):10128-10131. doi: 10.1021/jacs.6b06860

    2. [2]

      Gombac V, Sordelli L, Montini T, Delgado J J, Adamski A, Adami G, Cargnello M, Bernal S, Fornasiero P. CuOx-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions[J]. J. Phys. Chem. A, 2010,114(11):3916-3925. doi: 10.1021/jp907242q

    3. [3]

      Estahbanati M R K, Babin A, Feilizadeh M, Nayernia Z, Mahinpey N, Iliuta M C. Photocatalytic conversion of alcohols to hydrogen and carbon-containing products: A cleaner alcohol valorization approach[J]. J. Clean. Prod., 2021,318128546. doi: 10.1016/j.jclepro.2021.128546

    4. [4]

      Wu G P, Chen T, Zhou G H, Zong X, Li C. H2 production with low CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts[J]. Sci. China Ser. B Chem., 2008,51(2):97-100. doi: 10.1007/s11426-007-0132-7

    5. [5]

      Wu G P, Chen T, Su W G, Zhou G H, Zong X, Lei Z B, Li C. H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst[J]. Int. J. Hydro. Energy, 2008,33(4):1243-1251. doi: 10.1016/j.ijhydene.2007.12.020

    6. [6]

      Mohamed R M, Aazam E S. H2 production with low CO selectivity from photocatalytic reforming of glucose on Ni/TiO2-SiO2[J]. Chin J. Catal., 2012,33(2/3):247-253.

    7. [7]

      dos Santos R G, Alencar A C. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review[J]. Int. J. Hydrog. Energy, 2020,45(36):18114-18132. doi: 10.1016/j.ijhydene.2019.07.133

    8. [8]

      Jiao F, Li J J, Pan X L, Xiao J P, Li H B, Ma H, Wei M M, Pan Y, Zhou Z Y, Li M R, Miao S, Li J, Zhu Y F, Xiao D, He T, Yang J H, Qi F, Fu Q, Bao X H. Selective conversion of syngas to light olefins[J]. Science, 2016,351(6277):1065-1068. doi: 10.1126/science.aaf1835

    9. [9]

      Wang M, Liu M J, Lu J M, Wang F. Photo splitting of bio-polyols and sugars to methanol and syngas[J]. Nat. Commun., 2020,111083. doi: 10.1038/s41467-020-14915-8

    10. [10]

      Zhang Z, Wang M, Zhou H R, Wang F. Surface sulfate ion on CdS catalyst enhances syngas generation from biopolyols[J]. J. Am. Chem. Soc., 2021,143(17):6533-6541. doi: 10.1021/jacs.1c00830

    11. [11]

      Zhou H R, Wang M, Wang F. Oxygen-controlled photo-reforming of biopolyols to CO over Z-scheme CdS@g-C3N4[J]. Chem, 2022,8(2):465-479. doi: 10.1016/j.chempr.2021.10.021

    12. [12]

      Zhang Z, Wang M, Wang F. Plasma-assisted construction of CdO quantum dots/CdS semi-coherent interface for the photocatalytic bio-CO evolution[J]. Chem. Catalysis., 2022,2(6):1394-1406. doi: 10.1016/j.checat.2022.04.001

    13. [13]

      Kong F H, Zhou H R, Chen Z W, Dou Z L, Wang M. Photoelectrocatalytic reforming of polyol-based biomass into CO and H2 over nitrogen-doped WO3 with built-in electric fields[J]. Angew. Chem. Int. Ed., 2022,61(42)e202210745. doi: 10.1002/anie.202210745

    14. [14]

      Zhao H, Liu P, Wu X X, Wang A G, Zheng D W, Wang S Y, Chen Z X, Larter S, Li Y, Su B L, Kibria M G, Hu J G. Plasmon enhanced glucose photoreforming for arabinose and gas fuel co-production over 3DOM TiO2-Au[J]. Appl. Catal. B-Environ., 2021,291120055. doi: 10.1016/j.apcatb.2021.120055

    15. [15]

      Erjavec B, Tišler T, Tchernychova E, Plahuta M, Pintar A. Self-doped Cu-deposited titania nanotubes as efficient visible light photocatalyst[J]. Catal. Lett., 2017,147:1686-1695. doi: 10.1007/s10562-017-2073-x

    16. [16]

      Jiang Z, Yang F, Luo N J, Chu B T T, Sun D Y, Shi H H, Xiao T C, Edwards P P. Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis[J]. Chem. Commun., 2008,47:6372-6374.

    17. [17]

      Tsai C C, Teng H S. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments[J]. Chem. Mat., 2006,18(2):367-373. doi: 10.1021/cm0518527

    18. [18]

      Yang P F, Pan J H, Liu Y N, Zhang X Y, Feng J T, Hong S, Li D Q. Insight into the role of unsaturated coordination O2c-Ti5c-O2c sites on selective glycerol oxidation over AuPt/TiO2 catalysts[J]. ACS Catal., 2019,9(1):188-199. doi: 10.1021/acscatal.8b03438

    19. [19]

      ZHANG X Y, CUI X L. Preparation and photocatalytic hydrogen evolution performance of C-N co-doped nano TiO2 photocatalysts[J]. Acta Phys.-Chim. Sin., 2009,25(9):1829-1834.  

    20. [20]

      AN L, WU H, HAN X, LI Y G, WANG H Z, ZHANG Q H. Non- precious metals Co5.47N/nitrogen-doped rGO co-catalyst enhanced photocatalytic hydrogen evolution performance of TiO2[J]. J. Inorg. Mater., 2022,37(5):534-542.  

    21. [21]

      Lalitha K, Sadanandam G, Kumari V D, Subrahmanyam M, Sreedhar B, Hebalkar N Y. Highly stabilized and finely dispersed Cu2O/TiO2: A promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: Water mixtures[J]. J. Phys. Chem. C, 2010,114(50):22181-22189. doi: 10.1021/jp107405u

    22. [22]

      Hassan M A, Ashoush M A, Ebrahim F M, EL-Hady M M, Ahmad F, Abd El-Fattah Z M. Multiple optical features in binary-transition-metal borate glasses[J]. Opt. Quantum Electron., 2021,53(8)462. doi: 10.1007/s11082-021-03095-4

    23. [23]

      Ou G, Xu Y S, Wen B, Lin R, Ge B H, Tang Y, Liang Y W, Yang C, Huang K, Zu D, Yu R, Chen W X, Li J, Wu H, Liu L M, Li Y D. Tuning defects in oxides at room temperature by lithium reduction[J]. Nat. Commun., 2018,91302. doi: 10.1038/s41467-018-03765-0

    24. [24]

      LIU F Q, WANG L M, FAN D, XU L H, PAN H. Preparation and photocatalytic properties of TiO2/Cu2O/Pt composite hollow microspheres[J]. Chinese J. Inorg. Chem., 2023,39(2):300-308.  

    25. [25]

      Li Y, Wang W N, Zhan Z L, Woo M H, Wu C Y, Biswas P. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts[J]. Appl. Catal. B-Environ., 2010,100(1/2):386-392.

    26. [26]

      Liu Y X, Zhang B S, Luo L F, Chen X Y, Wang Z L, Wu E L, Su D S, Huang W X. TiO2/Cu2O core/ultrathin shell nanorods as efficient and stable photocatalysts for water reduction[J]. Angew. Chem. Int. Ed., 2015,54(50):15260-15265. doi: 10.1002/anie.201509115

    27. [27]

      Luo S, Liu C W, Wan Y, Li W, Ma C H, Liu S X, Heeres H J, Zheng W Q, Seshan K, He S B. Self-assembly of single-crystal ZnO nanorod arrays on flexible activated carbon fibers substrates and the superior photocatalytic degradation activity[J]. Appl. Surf. Sci., 2020,513145878. doi: 10.1016/j.apsusc.2020.145878

    28. [28]

      Yu J G, Qi L F, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets[J]. J. Phys. Chem. C, 2010,114(30):13118-13125. doi: 10.1021/jp104488b

    29. [29]

      Yu J G, Yu H G, Cheng B, Zhao X J, Yu J C, Ho W K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition[J]. J. Phys. Chem. B, 2003,107(50):13871-13879. doi: 10.1021/jp036158y

    30. [30]

      Suriyachai N, Chuangchote S, Laosiripojana N, Champreda V, Sagawa T. Synergistic effects of co-doping on photocatalytic activity of titanium dioxide on glucose conversion to value-added chemicals[J]. ACS Omega, 2020,5(32):20373-20381. doi: 10.1021/acsomega.0c02334

    31. [31]

      Zhang K, Sun J M, E L, Ma C H, Luo S, Wu Z W, Li W, Liu S X. Effects of the pore structure of commercial activated carbon on the electrochemical performance of supercapacitors[J]. J. Energy Storage, 2022,45103457. doi: 10.1016/j.est.2021.103457

    32. [32]

      Uemura Y, Taniike T, Tada M, Morikawa Y, Iwasawa Y. Switchover of reaction mechanism for the catalytic decomposition of HCOOH on a TiO2 (110) surface[J]. J. Phys. Chem. C, 2007,111(44):16379-16386. doi: 10.1021/jp074524y

    33. [33]

      Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: Nanotubes[J]. Chem. Rev., 2014,114(19):9385-9454. doi: 10.1021/cr500061m

    34. [34]

      Nwosu U, Zhao H, Kibria M, Hu J G. Unlocking selective pathways for glucose photoreforming by modulating reaction conditions[J]. ACS Sustain. Chem. Eng., 2022,10(18):5867-5874. doi: 10.1021/acssuschemeng.1c08708

    35. [35]

      Zhou H R, Wang M, Kong F H, Chen Z W, Dou Z L, Wang F. Facet-dependent electron transfer regulates photocatalytic valorization of biopolyols[J]. J. Am. Chem. Soc., 2022,144(46):21224-21231. doi: 10.1021/jacs.2c08655

  • 加载中
    1. [1]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    20. [20]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

Metrics
  • PDF Downloads(1)
  • Abstract views(429)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return