Citation: Hao-Qiang HOU, Li-Fei XU, Zhou XU, Zheng YANG, Wei LI, Chun-Hui MA, Sha LUO, Shou-Xin LIU. Preparation and photocatalytic properties of Cu, N co-doped TiO2 nanotubes for glycerol reforming to syngas[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2103-2112. doi: 10.11862/CJIC.2023.172 shu

Preparation and photocatalytic properties of Cu, N co-doped TiO2 nanotubes for glycerol reforming to syngas

Figures(8)

  • Cu, N co-doped TiO2 nanotubes (Cu/N-TNT) were prepared by alkaline hydrothermal-ion exchange method, and the photocatalytic properties for glycerol reforming to syngas (H2 and CO) were studied. The results show that Cu/N-TNT catalyst has tubular structures with abundant oxygen vacancies (OV). N forms the impurity energy level by substituting the partial O in the form of Ti-N. Cu is doped into the crystal lattice gap and surface of the catalyst in the form of Cu2+. Cu, N co-doping promotes the effective surface charge separation on the TiO2, and improves the photocatalytic activity and selectivity for glycerol reforming to syngas. CO and H2 yields were 7.3 and 8.5 mmol· g-1 on Cu/N-TNT catalyst doped with 0.15% Cu, which were 9.1 and 70.8 times those on the original TiO2. The molar ratio of H2/CO was increased from 0.52 to 1.18, and the molar ratio of CO/CO2 was raised from 0.21 to 0.42 after 8 h of UV irradiation. N and OV on Cu/N-TNT surface provide the active sites for the decarbonylation of aldehydes and dehydration of formic acid to produce CO. Cu acts as the shallow potential traps to inhibit the electron-hole recombination. Photogenerated holes (h+) play vital roles on the syngas generation during the photocatalytic reforming of glycerol, and excessive hydroxyl radical (·OH) and superoxide radical (·O2-) favor the deep oxidation of glycerol and decrease the selectivity of CO.
  • 加载中
    1. [1]

      Chai Z G, Zeng T T, Li Q, Lu L Q, Xiao W J, Xu D S. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst[J]. J. Am. Chem. Soc., 2016,138(32):10128-10131. doi: 10.1021/jacs.6b06860

    2. [2]

      Gombac V, Sordelli L, Montini T, Delgado J J, Adamski A, Adami G, Cargnello M, Bernal S, Fornasiero P. CuOx-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions[J]. J. Phys. Chem. A, 2010,114(11):3916-3925. doi: 10.1021/jp907242q

    3. [3]

      Estahbanati M R K, Babin A, Feilizadeh M, Nayernia Z, Mahinpey N, Iliuta M C. Photocatalytic conversion of alcohols to hydrogen and carbon-containing products: A cleaner alcohol valorization approach[J]. J. Clean. Prod., 2021,318128546. doi: 10.1016/j.jclepro.2021.128546

    4. [4]

      Wu G P, Chen T, Zhou G H, Zong X, Li C. H2 production with low CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts[J]. Sci. China Ser. B Chem., 2008,51(2):97-100. doi: 10.1007/s11426-007-0132-7

    5. [5]

      Wu G P, Chen T, Su W G, Zhou G H, Zong X, Lei Z B, Li C. H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst[J]. Int. J. Hydro. Energy, 2008,33(4):1243-1251. doi: 10.1016/j.ijhydene.2007.12.020

    6. [6]

      Mohamed R M, Aazam E S. H2 production with low CO selectivity from photocatalytic reforming of glucose on Ni/TiO2-SiO2[J]. Chin J. Catal., 2012,33(2/3):247-253.

    7. [7]

      dos Santos R G, Alencar A C. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review[J]. Int. J. Hydrog. Energy, 2020,45(36):18114-18132. doi: 10.1016/j.ijhydene.2019.07.133

    8. [8]

      Jiao F, Li J J, Pan X L, Xiao J P, Li H B, Ma H, Wei M M, Pan Y, Zhou Z Y, Li M R, Miao S, Li J, Zhu Y F, Xiao D, He T, Yang J H, Qi F, Fu Q, Bao X H. Selective conversion of syngas to light olefins[J]. Science, 2016,351(6277):1065-1068. doi: 10.1126/science.aaf1835

    9. [9]

      Wang M, Liu M J, Lu J M, Wang F. Photo splitting of bio-polyols and sugars to methanol and syngas[J]. Nat. Commun., 2020,111083. doi: 10.1038/s41467-020-14915-8

    10. [10]

      Zhang Z, Wang M, Zhou H R, Wang F. Surface sulfate ion on CdS catalyst enhances syngas generation from biopolyols[J]. J. Am. Chem. Soc., 2021,143(17):6533-6541. doi: 10.1021/jacs.1c00830

    11. [11]

      Zhou H R, Wang M, Wang F. Oxygen-controlled photo-reforming of biopolyols to CO over Z-scheme CdS@g-C3N4[J]. Chem, 2022,8(2):465-479. doi: 10.1016/j.chempr.2021.10.021

    12. [12]

      Zhang Z, Wang M, Wang F. Plasma-assisted construction of CdO quantum dots/CdS semi-coherent interface for the photocatalytic bio-CO evolution[J]. Chem. Catalysis., 2022,2(6):1394-1406. doi: 10.1016/j.checat.2022.04.001

    13. [13]

      Kong F H, Zhou H R, Chen Z W, Dou Z L, Wang M. Photoelectrocatalytic reforming of polyol-based biomass into CO and H2 over nitrogen-doped WO3 with built-in electric fields[J]. Angew. Chem. Int. Ed., 2022,61(42)e202210745. doi: 10.1002/anie.202210745

    14. [14]

      Zhao H, Liu P, Wu X X, Wang A G, Zheng D W, Wang S Y, Chen Z X, Larter S, Li Y, Su B L, Kibria M G, Hu J G. Plasmon enhanced glucose photoreforming for arabinose and gas fuel co-production over 3DOM TiO2-Au[J]. Appl. Catal. B-Environ., 2021,291120055. doi: 10.1016/j.apcatb.2021.120055

    15. [15]

      Erjavec B, Tišler T, Tchernychova E, Plahuta M, Pintar A. Self-doped Cu-deposited titania nanotubes as efficient visible light photocatalyst[J]. Catal. Lett., 2017,147:1686-1695. doi: 10.1007/s10562-017-2073-x

    16. [16]

      Jiang Z, Yang F, Luo N J, Chu B T T, Sun D Y, Shi H H, Xiao T C, Edwards P P. Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis[J]. Chem. Commun., 2008,47:6372-6374.

    17. [17]

      Tsai C C, Teng H S. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments[J]. Chem. Mat., 2006,18(2):367-373. doi: 10.1021/cm0518527

    18. [18]

      Yang P F, Pan J H, Liu Y N, Zhang X Y, Feng J T, Hong S, Li D Q. Insight into the role of unsaturated coordination O2c-Ti5c-O2c sites on selective glycerol oxidation over AuPt/TiO2 catalysts[J]. ACS Catal., 2019,9(1):188-199. doi: 10.1021/acscatal.8b03438

    19. [19]

      ZHANG X Y, CUI X L. Preparation and photocatalytic hydrogen evolution performance of C-N co-doped nano TiO2 photocatalysts[J]. Acta Phys.-Chim. Sin., 2009,25(9):1829-1834.  

    20. [20]

      AN L, WU H, HAN X, LI Y G, WANG H Z, ZHANG Q H. Non- precious metals Co5.47N/nitrogen-doped rGO co-catalyst enhanced photocatalytic hydrogen evolution performance of TiO2[J]. J. Inorg. Mater., 2022,37(5):534-542.  

    21. [21]

      Lalitha K, Sadanandam G, Kumari V D, Subrahmanyam M, Sreedhar B, Hebalkar N Y. Highly stabilized and finely dispersed Cu2O/TiO2: A promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: Water mixtures[J]. J. Phys. Chem. C, 2010,114(50):22181-22189. doi: 10.1021/jp107405u

    22. [22]

      Hassan M A, Ashoush M A, Ebrahim F M, EL-Hady M M, Ahmad F, Abd El-Fattah Z M. Multiple optical features in binary-transition-metal borate glasses[J]. Opt. Quantum Electron., 2021,53(8)462. doi: 10.1007/s11082-021-03095-4

    23. [23]

      Ou G, Xu Y S, Wen B, Lin R, Ge B H, Tang Y, Liang Y W, Yang C, Huang K, Zu D, Yu R, Chen W X, Li J, Wu H, Liu L M, Li Y D. Tuning defects in oxides at room temperature by lithium reduction[J]. Nat. Commun., 2018,91302. doi: 10.1038/s41467-018-03765-0

    24. [24]

      LIU F Q, WANG L M, FAN D, XU L H, PAN H. Preparation and photocatalytic properties of TiO2/Cu2O/Pt composite hollow microspheres[J]. Chinese J. Inorg. Chem., 2023,39(2):300-308.  

    25. [25]

      Li Y, Wang W N, Zhan Z L, Woo M H, Wu C Y, Biswas P. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts[J]. Appl. Catal. B-Environ., 2010,100(1/2):386-392.

    26. [26]

      Liu Y X, Zhang B S, Luo L F, Chen X Y, Wang Z L, Wu E L, Su D S, Huang W X. TiO2/Cu2O core/ultrathin shell nanorods as efficient and stable photocatalysts for water reduction[J]. Angew. Chem. Int. Ed., 2015,54(50):15260-15265. doi: 10.1002/anie.201509115

    27. [27]

      Luo S, Liu C W, Wan Y, Li W, Ma C H, Liu S X, Heeres H J, Zheng W Q, Seshan K, He S B. Self-assembly of single-crystal ZnO nanorod arrays on flexible activated carbon fibers substrates and the superior photocatalytic degradation activity[J]. Appl. Surf. Sci., 2020,513145878. doi: 10.1016/j.apsusc.2020.145878

    28. [28]

      Yu J G, Qi L F, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets[J]. J. Phys. Chem. C, 2010,114(30):13118-13125. doi: 10.1021/jp104488b

    29. [29]

      Yu J G, Yu H G, Cheng B, Zhao X J, Yu J C, Ho W K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition[J]. J. Phys. Chem. B, 2003,107(50):13871-13879. doi: 10.1021/jp036158y

    30. [30]

      Suriyachai N, Chuangchote S, Laosiripojana N, Champreda V, Sagawa T. Synergistic effects of co-doping on photocatalytic activity of titanium dioxide on glucose conversion to value-added chemicals[J]. ACS Omega, 2020,5(32):20373-20381. doi: 10.1021/acsomega.0c02334

    31. [31]

      Zhang K, Sun J M, E L, Ma C H, Luo S, Wu Z W, Li W, Liu S X. Effects of the pore structure of commercial activated carbon on the electrochemical performance of supercapacitors[J]. J. Energy Storage, 2022,45103457. doi: 10.1016/j.est.2021.103457

    32. [32]

      Uemura Y, Taniike T, Tada M, Morikawa Y, Iwasawa Y. Switchover of reaction mechanism for the catalytic decomposition of HCOOH on a TiO2 (110) surface[J]. J. Phys. Chem. C, 2007,111(44):16379-16386. doi: 10.1021/jp074524y

    33. [33]

      Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: Nanotubes[J]. Chem. Rev., 2014,114(19):9385-9454. doi: 10.1021/cr500061m

    34. [34]

      Nwosu U, Zhao H, Kibria M, Hu J G. Unlocking selective pathways for glucose photoreforming by modulating reaction conditions[J]. ACS Sustain. Chem. Eng., 2022,10(18):5867-5874. doi: 10.1021/acssuschemeng.1c08708

    35. [35]

      Zhou H R, Wang M, Kong F H, Chen Z W, Dou Z L, Wang F. Facet-dependent electron transfer regulates photocatalytic valorization of biopolyols[J]. J. Am. Chem. Soc., 2022,144(46):21224-21231. doi: 10.1021/jacs.2c08655

  • 加载中
    1. [1]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    2. [2]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    3. [3]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    4. [4]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    5. [5]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    7. [7]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    8. [8]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    9. [9]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    12. [12]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    17. [17]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    18. [18]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    19. [19]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    20. [20]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

Metrics
  • PDF Downloads(9)
  • Abstract views(1384)
  • HTML views(327)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return