Citation: Kang XIAO, Wang-Wang XIE, Xiang-Mei LIU. Preparation of nanoscale hafnium-containing metal-organic frameworks for X-ray-promoted chemodynamic synergistic therapy[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2033-2041. doi: 10.11862/CJIC.2023.171 shu

Preparation of nanoscale hafnium-containing metal-organic frameworks for X-ray-promoted chemodynamic synergistic therapy

  • Corresponding author: Xiang-Mei LIU, iamxmliu@njupt.edu.cn
  • Received Date: 23 April 2023
    Revised Date: 8 September 2023

Figures(6)

  • Nanoscale hafnium-containing metal-organic frameworks (Hf-nMOFs) with octahedral (Hf-MOFs-1) and sheet-like (Hf-MOFs-2) structures were synthesized by a solvothermal method using hafnium clusters as the connection point of the MOF, rigid dicarboxylic ligand 2, 2'-bipyridyl-5, 5'-dicarboxylic acid as the connector, acetic acid or trifluoroacetic acid and water as the structural regulator. Subsequently, a post-modification method was used to incorporate Fe3+ into the backbone of Hf-nMOFs, leading to the creation of multifunctional nMOFs, designated as Hf-Fe-MOFs-1 and Hf-Fe-MOFs-2. In a mimic tumor microenvironment, the detection of hydroxyl radicals showed that X-ray irradiation significantly increased the generation efficiency of hydroxyl radicals in both Hf-Fe-MOFs-1 and Hf-Fe-MOFs-2, with a more generation ability of sheet-like Hf-Fe-MOFs-2 than that of octahedral Hf-Fe-MOFs-1. Additionally, cellular assays demonstrated successful uptake of the Hf-nMOFs by cells and confirmed their efficacy in achieving low-dose X-ray-promoted chemodynamic synergistic therapy.
  • 加载中
    1. [1]

      Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin M R, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy[J]. Bioeng. Trans. Med., 2023. doi: 10.1002/btm2.10498

    2. [2]

      SUN S J, WU D, ZHANG J H, FAN M F, ZENG L Y. Manganese-doped gold nanoclusters with ultrasmall size and microenvironment-responsive visualized theranostics of tumor[J]. Sci. Sin. Chim., 2021,51(9):1259-1268.  

    3. [3]

      CHEN X Y, LIU Y Y, BU W B. Chenodynamic therapy: integration of Fenton chemistry and biomedicine[J]. Sci. Sin. Chim., 2020,50(2):159-172.  

    4. [4]

      ZHANG J X, HUANG W G, HUANG J L, MAI N Q. Highly conjugated tetraphenylporphrin-Ru(Ⅱ) bipyridine complex: Synthesis, optical properties, and photodynamic anticancer activity[J]. Chinese J. Inorg. Chem., 2022,38(12):2383-2391.  

    5. [5]

      WANG Y W, CHEN J J, TIAN Z F, ZHU M, ZHU Y F. Potassium ferrate-loaded porphyrin-based (Ⅵ) metal-organic frameworks for combined photodymanic and chemodynamic tumor therapy[J]. J. Inorg. Mater., 2021,36(12):1305-1315.  

    6. [6]

      LIU X M, TIAN K, XUE C F, HAN Y F, LIU S J, ZHAO Q. Application of X-ray excited phosphors in photodynamic therapy[J]. Prog. Chem., 2017,29(12):1488-1498.  

    7. [7]

      Tian Q W, Xue F F, Wang Y R, Cheng Y Y, An L, Yang S P, Chen X Y, Huang G. Recent advances in enhanced chemodynamic therapy strategies[J]. Nano Today, 2021,39101162. doi: 10.1016/j.nantod.2021.101162

    8. [8]

      Wang X W, Zhong X Y, Liu Z, Cheng L. Recent progress of chemodynamic therapy-induced combination cancer therapy[J]. Nano Today, 2020,35100946. doi: 10.1016/j.nantod.2020.100946

    9. [9]

      Zhou Y F, Fan S Y, Feng L L, Huang X L, Chen X Y. Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy[J]. Adv. Mater., 2021,33(48)2104223. doi: 10.1002/adma.202104223

    10. [10]

      LIU Y B, YU W S, WANG J X, DONG X T, FU Z D, LIU G X. Application of bismuth-based nanomaterials in imaging diagnosis and therapy for cancer[J]. Chinese J. Inorg. Chem., 2021,37(1):1-15.  

    11. [11]

      Wang X, Zhang C Y, Du J F, Dong X H, Jian S, Yan L, Gu Z J, Zhao Y L. Enhanced generation of non-oxygen dependent free radicals by Schottky-type heterostructures of Au-Bi2S3 nanoparticles via X-ray-induced catalytic reaction for radiosensitization[J]. ACS Nano, 2019,13(5):5947-5958. doi: 10.1021/acsnano.9b01818

    12. [12]

      Zang Y, Gong L J, Mei L Q, Gu Z J, Wang Q. Bi2WO6 semiconductor nanoplates for tumor radiosensitization through high-Z effects and radiocatalysis[J]. ACS Appl. Mater. Interfaces, 2019,11(21):18942-18952. doi: 10.1021/acsami.9b03636

    13. [13]

      Cheng N N, Starkewolf Z, Davidson R A, Sharmah A, Lee C, Lien J, Guo T. Chemical enhancement by nanomaterials under X-ray irradiation[J]. J. Am. Chem. Soc., 2012,134(4):1950-1953. doi: 10.1021/ja210239k

    14. [14]

      Rancoule C, Magne N, Vallard A, Guy J B, Rodriguez-Lafrasse C, Deutsch E, Chargari C. Nanoparticles in radiation oncology: From bench-side to bedside[J]. Cancer Lett., 2016,375(2):256-262. doi: 10.1016/j.canlet.2016.03.011

    15. [15]

      Butterworth K T, McMahon S J, Currell F J, Prise K M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization[J]. Nanoscale, 2012,4(16):4830-4838. doi: 10.1039/c2nr31227a

    16. [16]

      Chen M H, Hanagata N, Ikoma T, Huang J Y, Li K Y, Lin C P, Lin F H. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment[J]. Acta Biomater., 2016,37:165-173. doi: 10.1016/j.actbio.2016.04.004

    17. [17]

      Marill J, Anesary N M, Zhang P, Vivet S, Borghi E, Levy L, Pottier A. Hafnium oxide nanoparticles: Toward an in vitro predictive biological effect?[J]. Radiat. Oncol., 2014,9150. doi: 10.1186/1748-717X-9-150

    18. [18]

      Zhang P, Marin J, Darmon A, Anesary N M, Lu B, Paris S. NBTXR3 radiotherapy-activated functionalized hafnium oxide nanoparticles show efficient antitumor effects across a large panel of human cancer models[J]. Int. J. Nanomed., 2021,16:2761-2773. doi: 10.2147/IJN.S301182

    19. [19]

      Bonvalot S, Rutkowski P L, Thariat J, Carrere S, Ducassou A, Sunyach M P, Agoston P, Hong A, Mervoyer A, Rastrelli M, Moreno V, Li R K, Tiangco B, Herraez A C, Gronchi A, Mangel L, Sy-Ortin T, Hohenberger P, de Baere T, Le Cesne A, Helfre S, Saada-Bouzid E, Borkowska A, Anghel R, Co A, Gebhart M, Kantor G, Montero A, Loong H H, Verges R, Lapeire L, Dema S, Kacso G, Austen L, Moureau-Zabotto L, Servois V, Wardelmann E, Terrier P, Lazar A J, Bovee J V M G, Le Pechoux C, Papi Z. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act. In. Sarc): A multicentre, phase 2-3, randomised, controlled trial[J]. Lancet Oncol., 2019,20(8):1148-1159. doi: 10.1016/S1470-2045(19)30326-2

    20. [20]

      Field J A, Luna-Velasco A, Boitano S A, Shadman F, Ratner B D, Barnes C, Sierra-Alvarez R. Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles[J]. Chemosphere, 2011,84(10):1401-1407. doi: 10.1016/j.chemosphere.2011.04.067

    21. [21]

      Bonvalot S, Rutkowski P L, Thariat J, Carrere S, Sunyach M P, Saada E, Agoston P, Hong A, Mervoyer A, Rastrelli M, Le Pechoux C, Moreno V, Li R, Tiangco B, Casado Herraez A, Gronchi A, Mangel L, Hohenberger P, Delannes M, Papai Z. A phase Ⅱ/Ⅲ trial of hafnium oxide nanoparticles activated by radiotherapy in the treatment of locally advance soft tissue sarcoma of the extremity and trunk wall[J]. Ann. Oncol., 2018,29:753-753.

    22. [22]

      Singh D, Dilnawaz F, Sahoo S K. Challenges of moving theranostic nanomedicine into the clinic[J]. Nanomedicine, 2020,15(2):111-114. doi: 10.2217/nnm-2019-0401

    23. [23]

      Shatkin J A. The Future in Nanosafety[J]. Nano Lett., 2020,20(3):1479-1480. doi: 10.1021/acs.nanolett.0c00432

    24. [24]

      Gao S T, Han Y, Fan M, Li Z H, Ge K, Liang X J, Zhang J C. Metal-organic framework-based nanocatalytic medicine for chemodynamic therapy[J]. Sci. China-Mater., 2020,63(12):2429-2434. doi: 10.1007/s40843-020-1513-8

    25. [25]

      WU Z Q, LIU X Y. Integrated application of metal-organic frameworks in cancer diagnosis and treatment[J]. Applied Chemical Industry, 2022,51(8):2396-2399.  

    26. [26]

      Lan G X, Ni K Y, Veroneau S S, Song Y, Lin W B. Nanoscale metal-organic layers for radiotherapy-radiodynamic therapy[J]. J. Am. Chem. Soc., 2018,140(49):16971-16975. doi: 10.1021/jacs.8b11593

    27. [27]

      Lan G X, Ni K Y, Xu R Y, Lu K D, Lin Z K, Chan C, Lin W B. Nanoscale metal-organic layers for deeply penetrating X-ray-induced photodynamic therapy[J]. Angew. Chem. Int. Ed., 2017,56(40):12102-12106. doi: 10.1002/anie.201704828

    28. [28]

      Liu J J, Yang Y, Zhu W W, Yi X, Dong Z L, Xu X N, Chen M W, Yang K, Lu G, Jiang L X, Liu Z. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment[J]. Biomaterials, 2016,97:1-9. doi: 10.1016/j.biomaterials.2016.04.034

    29. [29]

      Lu K D, He C B, Guo N N, Chan C, Ni K Y, Lan G X, Tang H D, Pelizzari C, Fu Y X, Spiotto M T, Weichselbaum R R, Lin W B. Low-dose X-ray radiotherapy-radio dynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy[J]. Nat. Biomed. Eng., 2018,2(8):600-610. doi: 10.1038/s41551-018-0203-4

    30. [30]

      Ni K Y, Lan G X, Veroneau S S, Duan X P, Song Y, Lin W B. Nanoscale metal-organic frameworks for mitochondria-targeted radio-therapy-radiodynamic therapy[J]. Nat. Commun., 2018,94321. doi: 10.1038/s41467-018-06655-7

    31. [31]

      Yuan S, Qin J S, Lollar C T, Zhou H C. Stable metal-organic frameworks with group 4 metals: Current status and trends[J]. ACS Central Sci., 2018,4(4):440-450. doi: 10.1021/acscentsci.8b00073

    32. [32]

      LI M, HUANG X M, TAN W L. 7-Hydroxycoumarin fluorescent probe for the determination of 2, 4, 6-tri-nitrophenol in water[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2019,55(1):108-111.  

    33. [33]

      Lammert M, Glißmann C, Reinsch H, Stock N. Synthesis and characterization of new Ce(Ⅳ)-MOFs exhibiting various framework topologies[J]. Cryst. Growth Des., 2017,17(3):1125-1131.

    34. [34]

      Gong T, Li Y L, Lv B, Wang H, Liu Y Y, Yang W, Wu Y L, Jiang X W, Gao H B, Zheng X P, Bu W B. Full-process radiosensitization based on nanoscale metal-organic frameworks[J]. ACS Nano, 2020,14(3):3032-3040.

    35. [35]

      Sun X, He G H, Xiong C X, Wang C Y, Lian X, Hu L F, Li Z K, Dalgarno S J, Yang Y W, Tian J. One-pot fabrication of hollow porphyrinic MOF nanoparticles with ultrahigh drug loading toward controlled delivery and synergistic cancer therapy[J]. ACS Appl. Mater. Interfaces, 2021,13(3):3679-3693.

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    14. [14]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    15. [15]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    16. [16]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    20. [20]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

Metrics
  • PDF Downloads(7)
  • Abstract views(432)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return