Citation: Shuang-Yan QIU, Jun GUO, Dan ZHANG, Lin LU, Yi-Ju ZHANG, Tai-Wen ZHANG. POMOF based on H3PW12O40·xH2O and 3, 5-diamino-1, 2, 4-triazole: Synthesis, characterization, and catalytic oxidation performance for iodine ion[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2113-2120. doi: 10.11862/CJIC.2023.168 shu

POMOF based on H3PW12O40·xH2O and 3, 5-diamino-1, 2, 4-triazole: Synthesis, characterization, and catalytic oxidation performance for iodine ion

  • Corresponding author: Jun GUO, justin_gixt@163.com
  • Received Date: 6 April 2023
    Revised Date: 3 August 2023

Figures(8)

  • A novel and rare case of Keggin-type polyoxometalate-based metal-organic framework compound was synthesized by solvothermal method, namely[Cu4(3, 5-datrz)4] [PW9W3O39]·H2O (1) (3, 5-datrz=3, 5-diamino-1, 2, 4-triazole). Compound 1 was characterized by single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, Thermogravimetric analysis, powder X-ray diffraction, and elemental analysis. The single-crystal X-ray diffraction analysis reveals that compound 1 crystallizes in the monoclinic system with space group C2/c. The asymmetric unit contains two Cu+ ions, two 3, 5-datrz ligands, one-half of Keggin-type phosphotungstic acid anions, and one water molecule. Except for lattice water, the components are linked by covalent bonding to form Keggin-type polyoxometa-late-based metal-organic framework compounds. Compound 1 was used as a heterogeneous catalyst to catalyze the oxidation of iodine ions by H2O2 at a temperature of 55℃, and the study showed that the variation of iodine generation by compound 1 was 6.11×10-7 mol·L-1·s-1, and the conversion rate could still reach as high as 99.6% when it was reused six times.
  • 加载中
    1. [1]

      QIN C, WANG B, WANG Y D. Applications of metal-organic frameworks and their derived metal oxides in resistive gas sensors[J]. Chinese J. Inorg. Chem., 2022,38(3):377-398.  

    2. [2]

      CHANG Z, QIAO Y, YANG H J, DENG H, ZHU X Y, HE P, ZHOU H S. Applications of metal-organic frameworks (MOFs) materials in lithium-ion battery/lithium-metal battery electrolytes[J]. Acta Chim. Sinica, 2021,79(2):139-145.  

    3. [3]

      Zhang S M, Wang Y, Ma Y Y, Li Z B, Du J, Han Z G. Three-dimensional silver-containing polyoxotungstate frameworks for photocatalytic aerobic oxidation of benzyl alcohol[J]. Inorg. Chem., 2022,61(50):20596-20607. doi: 10.1021/acs.inorgchem.2c03472

    4. [4]

      Wei R Z, Liu Z, Wei W C, Liang C X, Han G C, Zhan L. Synthesis, crystal structure and characterization of two cobalt(Ⅱ) complexes based on pyridine carboxylic acid ligands[J]. Z. Anorg. Allg. Chem., 2022,648(9):83-88.

    5. [5]

      Zhao J W, Li Y Z, Chen L J, Guo Y Y. Research progress on polyoxometalate-based transition-metal-rare-earth heterometallic derived materials: Synthetic strategies, structural overview and functional applications[J]. Chem. Commun., 2016,52(24):4418-4445. doi: 10.1039/C5CC10447E

    6. [6]

      LI N, ZHANG C, REN J J, CUI M, ZHAO H Y, ZHANG H Y, CHEN S X, HAN H Y, ZHANG H. Construction and properties of the electrochemical bisphenol a sensor based on polyoxometalates and multi-walled carbon nanotubes[J]. Chinese J. Inorg. Chem., 2022,38(8):1633-1642.  

    7. [7]

      WU L Z, LI Y W, CHANG Y D, YANG N, GE X Y, HUI J F, NIU B, XUE G L. Syntheses, structures, and magnetic properties of sandwich-type tungstobismuthate containing manganese[J]. Chinese J. Inorg. Chem., 2022,38(10):2056-2064.  

    8. [8]

      Niu Y W, Niu S M, He D F, Li N, Ji Y J, Zheng Z P, Luo F, Liu S X, Shi Z, Hu C W. Crystal facets make a profound difference in polyoxometalate containing metal-organic frameworks as catalysts for biodiesel production[J]. J. Am. Chem. Soc., 2015,137(39):12697-12703. doi: 10.1021/jacs.5b08273

    9. [9]

      Zhao X Y, Zhang Y, Zhao Y N, Tan H Q, Zhao Z, Shi H F, Wang E B, Li Y G. AgxH3-xPMo12O40/Ag nanorods/g-C3N4 1D/2D Z-scheme heterojunction for highly efficient visible-light photocatalysis[J]. Dalton Trans., 2019,48(19):6484-6491. doi: 10.1039/C9DT00744J

    10. [10]

      Yu B, Zhang S M, Wang X. Helical microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene[J]. Angew. Chem. Int. Ed., 2021,60(32):17404-17409. doi: 10.1002/anie.202105587

    11. [11]

      Ma P T, Feng H, Jing P W, Niu J Y. Carboxylate covalently modified polyoxometalates: From synthesis, structural diversity to applications[J]. Coord. Chem. Rev., 2019,378:281-309. doi: 10.1016/j.ccr.2018.02.010

    12. [12]

      Yang M L, Rong S, Wang X M, Ma H Y, Pang H J, Tan L C, Jiang Y X, Gao K Q. Preparation and application of Keggin polyoxometalate-based 3D coordination polymer materials as supercapacitors and amperometric sensors[J]. ChemNanoMat, 2021,7(3):299-306. doi: 10.1002/cnma.202000654

    13. [13]

      Li X, Chi X L, Xiao D R, Shen J. Helical coordination polymers based on Keggin-type POMs and N-donor ligand[J]. Z. Anorg. Allg. Chem., 2020,646(10):452-456. doi: 10.1002/zaac.202000060

    14. [14]

      ZHOU X, YE J, WANG Z H, JIN S R. Two inorganic-organic hybrid crystals based on polyoxometallates and imidazole compounds: Syntheses and properties[J]. Chinese J. Inorg. Chem., 2019,35(1):43-49.  

    15. [15]

      Niu Y B, Zheng J J, Tian G, Wang H, Alating S G, Nie J S. A new supramolecular hybrid based on Keggin polyoxotungstates and dinuclear Cl-bridged Cu(Ⅱ) complex: Synthesis, characterization, and properties[J]. Russ. J. Coord. Chem., 2022,48(9):592-599. doi: 10.1134/S1070328422090020

    16. [16]

      CAO Z Y, XU H, PAN W, ZENG X H, ZHANG J Y, GUO H Y, LIAO J S, LIU S J, XIE J L. Fabrication of hybrid materials containing Keggin-type polyoxometalates units and 2-picolinic acid: Synthesis, structures and properties[J]. Chinese J. Inorg. Chem., 2020,36(9):1613-1619.  

    17. [17]

      Zhang Y N, Zhang Y, Li L, Chen J L, Li P Z, Huang W H. One-step in situ growth of high-density POMOFs films on carbon cloth for the electrochemical detection of bromate[J]. J. Electroanal. Chem., 2020,861113939. doi: 10.1016/j.jelechem.2020.113939

    18. [18]

      Liu J H, Shen Q T, Yang J, Yu M Y, Ma J F. Polyoxometalate-templated cobalt-resorcin[J]. Inorg. Chem., 2021,60(6):3729-3740. doi: 10.1021/acs.inorgchem.0c03511

    19. [19]

      Zhou K F, Han H, Sha J Q, Luan S Z, Diao Y, Dong C Y, Yang J H. Synthesis of POMOFs with 8-fold helix and its composite with carboxyl functionalized SWCNTs for the voltammetric determination of dopamine[J]. Anal. Bioanal. Chem., 2021,413(21):5309-5320. doi: 10.1007/s00216-021-03504-3

    20. [20]

      Zhang M, Zhang A M, Wang X X, Huang Q, Zhu X S, Wang X L, Dong L Z, Li S L, Lan Y Q. Encapsulating ionic liquids into POM-based MOFs to improve their conductivity for superior lithium storage[J]. J. Mater. Chem. A, 2018,6(18):8735-8741. doi: 10.1039/C8TA01062E

    21. [21]

      Cai F S, Duan Y Q, Yuan Z H. Iodine/β-cyclodextrin composite cathode for rechargeable lithium iodine batteries[J]. J. Mater. Sci.-Mater. Electron., 2018,29:11540-11545. doi: 10.1007/s10854-018-9249-z

    22. [22]

      CAO Z H, DA Y W, NIU C, HU S Y, JIAO J, LAN T, NIU G J. Indicative effect of iodine value on application of BAC in WTPs[J]. Water Purification Technology, 2022,41(12):19-25.  

    23. [23]

      NIE Z, CHU W L, NIE W Z, CHENG Y. Application status and research progress of iodine dressing[J]. Materials Reports, 2023,37(2):219-225.  

    24. [24]

      CHENG Q Y. Recycling of iodine-containing waste liquid[J]. Jiangxi Chemical Industry, 2003,6(2):79-81.  

    25. [25]

      WEI J Y, XU Y M, HAN Z X, YUE Q S. Iodine recovery from iodine-containing waste water[J]. Inorganic Chemicals Industry, 2007,39(7):47-49.  

    26. [26]

      PENG B L, WU Y L, XIANG S L. Industrial technology to recover ultra-low grade iodine resource associated in phosphate rock[J]. Modern Chemical Industry, 2017,37(8):162-165.  

    27. [27]

      CAI L L. Studies on oxidation performance and mechanism of iodide ions catalyzed by Mo-containing polymetallic oxygen clusters. Guiyang: Guizhou Normal University, 2020: 11-47

    28. [28]

      ZHOU W Z, GUO J, LI W F, BAN D M, XIE T. Research on catalytic oxidation reaction of iodine ions by bentonite-phosphomolybdic acid catalysts[J]. Inorganic Chemicals Industry, 2017,49(10):62-66.  

    29. [29]

      ZHOU W Z, GUO J, LI W F, ZHANG D, QIN J. Study on the heterogeneous catalytic oxidation of iodide ions by PMoO/SiO2[J]. Chemical Research and Application, 2019,31(7):1274-1283.  

    30. [30]

      FENG X, GUO J, ZHANG D. Study on synthesis, structure and catalytic iodide oxidation of (C5H7N2O2)4(SiMo12O40)[J]. Inorganic Chemicals Industry, 2021,53(9):109-113.  

    31. [31]

      GUO J, FENG X, ZHANG D, YUAN C M. Synthesis, structure and catalytic iodide oxidation of 2-amino-6-methylpyridine/Keggin-type polyacid supramolecular compounds[J]. Chemical Research and Application, 2021,33(9):1706-1711.  

    32. [32]

      GUO J, ZHANG T W, ZHANG D. Synthesis, characterization of (PMo12)(HPy)3 and its catalytic oxidation property of iodide ion[J]. Inorganic Chemicals Industry, 2023,55(4):125-132.  

    33. [33]

      YUAN C M, GUO J, ZHANG D, ZHANG T W. Synthesis, structure and catalytic iodide oxidation of Cu-3-trz-PMo12[J]. Inorganic Chemicals Industry, 2022,54(8):145-150.  

    34. [34]

      ZHANG T W, GUO J, ZHANG D, YUAN C M. Synthesis, characterization and catalytic oxidation iodine ion performance of trz-Cl-Cu-PMo12. Chem. J. Chinese Universities, 2022, 43(10): 75-84

    35. [35]

      Chai D F, Xin J J, Li B N, Pang H J, Ma H Y, Li K Q, Xiao B X, Wang X M, Tan L C. Mo-based crystal POMOFs with a high electrochemical capacitor performance[J]. Dalton Trans., 2019,48(34):13026-13033.

    36. [36]

      GONG D L, LIU Y, LI J. Synthesis, crystal structure and characterization of a Cu(Ⅱ)-dien complex based on Keggin polyoxotungstates[J]. Chemical Research, 2021,32(6):488-493.  

    37. [37]

      Brown D I, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallogr. Sect. B, 1985,B41(4):244-247.

    38. [38]

      CHEN W L, WANG E B. Polyacid chemistry. Beijing: Science Press, 2013: 47-53

    39. [39]

      TANG J, QIN H. Synthesis of a new nickel-substituted Dawson-type zinc-tungstic acid complex and its catalytic performance for the oxidation of styrene to benzaldehyde[J]. Journal of Molecular Science, 2012,28(6):483-489.  

    40. [40]

      WANG Z H, WANG X P, ZHAO S N, WANG Q, MENG X G, JIN S R. Synthesis, crystal structure and electrochemistry property of copper coordination polymers containing phosphorus molybdate and 2, 2'-bipyridine-3, 3'-dicarboxylic acid ligands[J]. Chinese J. Inorg. Chem., 2013,29(9):1877-1881.  

    41. [41]

      CHEN X H, XUE A, YANG S Z, LIU H. Kinetics of the oxidation of iodide ions with hydrogen peroxide-sulfuric acid[J]. The Chinese Journal of Process Engineering, 2009,9(S1):181-184.  

    42. [42]

      Qin Y, Song F, Ai Z, Zhang P, Zhang L. Protocatechuic acid promoted alachlor degradation in Fe(Ⅲ)/H2O2 Fenton system[J]. Environ. Sci. Technol., 2015,49(13):7948-7956.

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    13. [13]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

Metrics
  • PDF Downloads(1)
  • Abstract views(520)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return