Citation: Yan XU, Su-Zhi LI, Xin-Xing LI. Synthesis, structures, and luminescent properties of a series of lanthanide carboxylate-phosphonates[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1950-1958. doi: 10.11862/CJIC.2023.167 shu

Synthesis, structures, and luminescent properties of a series of lanthanide carboxylate-phosphonates

  • Corresponding author: Yan XU, xuyan0511@126.com
  • Received Date: 13 May 2023
    Revised Date: 16 June 2023

Figures(6)

  • Three lanthanide carboxylate-phosphonates based on lanthanide nitrate hexahydrate and (5-carboxynaph-thalen-1-yl)phosphonic acid (5-pncH3) formulated as [Pr(5-pnc)(H2O)]·2H2O (1), [Sm(5-pnc)(H2O)]·H2O (2), and [Eu(5-pnc)(H2O)]·H2O (3) has been obtained as single phases under solvothermal conditions. Complexes 1-3 were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, IR spectra, thermo-gravimetric analysis, and fluorescence spectra. Crystal structures reveal that each lanthanide ion is seven-coordinated by six O atoms from five phosphonate ligands and one O atom from one water molecule. The building blocks [LnO7] of complexes 1-3 are linked into a 1D double metal chain structure by the O—C—O, O—P—O, or —O— units. The 1D double metal chain is fused into a 3D open-framework structure by 5-pnc3-. Complex 3 exhibited very strong characteristic emission bands for the Eu (Ⅲ) ion in the visible region under 330 nm excitation. Complexes 1 and 2 displayed very broad ligand -centered emission bands in the blue light region.
  • 光催化作为解决环境和能源危机最有前景的技术之一,能够将低密度的太阳能转化为高密度的化学能,并且能够通过光催化反应分解各种污染物[1-3]。相比传统用于水污染治理的技术,如吸附、生物降解以及高温焚烧等,光催化具有价格低廉、不产生二次污染、反应条件温和等优势[5-9]。近年来,由特定的[Bi2O2]2+层和互层离子或基团组成的氯氧化铋(BiOCl)具有的化学稳定性、独特的层结构和易于合成的特点使其备受关注[10],但其带隙能宽(约3.5 eV),只有在紫外光(λ < 400 nm)条件下才能被激发,限制了其应用[11-16]。因此,如何提高BiOCl的可见光吸收范围成为研究的难点与热点。

    光催化材料的能带结构决定了其光吸收波长范围,通过引入氧空位(OV)可以有效调控能隙带宽与电子-空穴的分离效率,从而提高材料在可见光范围内的催化效率[17-18]。研究表明含有丰富OV的BiOCl纳米片在高达500 nm的波长下表现出出色的全氟辛酸(PFOA)降解率。随着制备过程中碱源的改变,BiOCl纳米片中OV的比例从0.573增加到0.981,BiOCl对PFOA降解和脱氟的光催化性能提高了3~4倍[19]

    由于玻璃采用高温-淬冷方法,保留了高温阶段的无定形结构,该结构中存在大量的非桥氧;铋玻璃相比硅玻璃具有更长的Bi—O键,因此具有更加松散的网络结构,可能形成的OV也更多。基于这个思路,我们以铋玻璃作为铋源,初次通过直接的盐酸腐蚀法将玻璃中的氧缺陷引入到BiOCl材料。并且通过添加不同网络外体组分,研究玻璃网络结构的破坏对BiOCl材料的OV浓度的影响。

    试剂包括氧化铋(中国医药集团有限公司)、硼酸(BOR Mining Chemical Company,俄罗斯)、氧化锌(安徽省黄山县锦华氧化锌厂)、碳酸锶(上海红蝶化工有限公司)、碳酸钠(上海欧金实业有限公司)和盐酸(阿拉丁)。

    我们在Bi2O3-B2O3-ZnO (BBZ)玻璃的基础上加入了2种网络外体SrO和Na2O组分,原料分别来源于Na2CO3和SrCO3,玻璃组成设计如表 1所示。

    表 1

    表 1  铋玻璃的主要成份及含量
    Table 1.  Main components and contents of bismuth glasses
    下载: 导出CSV
    Sample Molar fraction/%
    Bi2O3 B2O3 ZnO SrO Na2O
    BBZ 40 30 30
    BBZSr 40 30 20 10
    BBZSN 40 30 10 10 10

    铋玻璃的制备采用传统的熔融淬冷方法。分别称取表 1中各组分对应的原料,在球磨机上混合均匀后900 ℃熔融45 min得到均匀玻璃液,然后再进行急冷得到玻璃碎片,研磨玻璃碎片得到铋玻璃粉。

    采用一步的酸腐蚀法制备BiOCl材料。分别将5 g BBZ、BBZSr和BBZSN玻璃粉加入100 mL 6% 的HCl溶液中搅拌2 h得到产物。将所得产物用蒸馏水和乙醇洗涤数次,100 ℃干燥过夜,分别制得BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN粉体。

    通过X射线粉末衍射仪(XRD,德国,Bruker D8 ADVANCE)对样品进行物相分析,电压40 kV,电流40 mA,扫描范围10° ~80° (2θ),靶材Cu Kα,波长0.154 06 nm。通过FEIVeriosG4型扫描电子显微镜(SEM,工作电压3.0 kV)及JEM-2010型透射电子显微镜(TEM,工作电压200 kV)观察样品的微观形貌。采用傅里叶变换红外光谱仪(FT-IR)和拉曼光谱仪(Raman)表征材料的化学组分。通过紫外可见光谱仪(Shimadzu UV-3600)测定样品的紫外可见漫反射(UV-Vis DRS)谱图,扫描范围为300~800 nm。通过电子顺磁共振(EPR)对材料光激发下的活性基团进行表征。使用荧光光谱仪(PL,FLS980)对材料进行光致发光测试。

    通过RhB(10 mg·L-1)在紫外光和可见光照射下的光催化分解实验来评估BiOCl材料的光催化活性。使用具有400 nm截止滤光片和200~400 nm石英滤光片的300 W氙灯分别获得可见光和紫外光。在光催化实验中,将10 mg BiOCl光催化剂加入100 mL RhB溶液中并置于暗处搅拌,达到吸附-脱附平衡后再进行照射。在给定时间后,取3 mL混合物离心以除去BiOCl材料。根据RhB在553 nm处的吸光度[20-22],通过紫外分光光度计分析确定RhB浓度。

    图 1a可知,所有铋玻璃的XRD图呈现出显著的玻璃衍射特征,表明所制备的玻璃成玻性良好。从图 1b的铋玻璃的FT-IR谱图可知,玻璃的吸收峰出现在520、710、920、1 000、1 180和1 280 cm-1附近,其中,710 cm-1处的吸收峰强度随玻璃组分的增加不断增大,表明[BO4]四面体逐渐转变为[BO3]三角体[23]。另外,从拉曼光谱(图 1c)中可以看出,铋玻璃的特征峰主要集中在128、416、583、722、924、1 250 cm-1。从BBZ玻璃到BBZSN玻璃,416和583 cm-1处的峰强度明显增强,表明[BiO6]八面体向[BiO3]三角体转变[24]。结合红外光谱和拉曼光谱分析,引入SrO和Na2O作为玻璃网络外体氧化物,增加了玻璃体系游离氧的含量,使玻璃的结构更松散,加入的网络外体更多,玻璃的结构破坏就越严重。因此,与BBZ和BBZSr玻璃相比,BBZSN具有最松散的网络结构,可能引起的氧缺陷也更多。

    图 1

    图 1.  所制备的铋玻璃(a) XRD图、(b)FT-IR谱图和(c) Raman谱图
    Figure 1.  (a) XRD patterns, (b) FT-IR spectra, and (c) Raman spectra of as-prepared bismuth glasses

    SEM图显示了所制备的BiOCl光催化剂都呈现出纳米片形状,由基础玻璃BBZ合成的BiOCl-BBZ材料具有较大的片层结构(图 2a),在引入SrO后,BiOCl-BBZSr则呈现不规则的团聚结构(图 2b),在随后的网络外体Na2O的添加,更大程度地对玻璃的骨架结构进行破坏,使得所制备的BiOCl-BBZSN材料具有更小的纳米碎片团聚结构(图 2c)。

    图 2

    图 2.  (a) BiOCl-BBZ、(b) BiOCl-BBZSr和(c) BiOCl-BBZSN光催化剂的SEM图
    Figure 2.  SEM images of (a) BiOCl-BBZ, (b) BiOCl-BBZSr, and (c) BiOCl-BBZSN photocatalysts

    通过XRD分析确认样品的相纯度和结晶度,结果如图 3所示。由图可知,所有样品的XRD峰均可以很好地对应四方相BiOCl(PDF No.06-0249),晶格参数a=0.389 1 nm和c=0.736 9 nm。图中未观察到杂质峰,表明所制备的样品纯度高。

    图 3

    图 3.  所制备的BiOCl光催化剂的XRD图
    Figure 3.  XRD patterns of as-prepared BiOCl photocatalysts

    为了进一步了解样品的微观结构,我们对BiOCl-BBZSN进行了TEM分析,如图 4a所示。高分辨率透射电子显微镜(HRTEM,图 4b)揭示了纳米片的高度结晶性和清晰的晶格条纹,晶格间距为0.275 nm,对应BiOCl(110)面。插图中的选区电子衍射(SAED)图案中标出的2组相邻点之间的夹角为45°,与BiOCl光催化剂的(100)和(110)晶面夹角的理论值一致[25-26],可以索引到[001]区域轴,表明BiOCl-BBZSN的暴露面是(001)面。

    图 4

    图 4.  BiOCl-BBZSN的(a) TEM图和(b) HRTEM图
    Figure 4.  (a) TEM image and (b) HRTEM image of BiOCl-BBZSN

    Inset in b: SAED pattern

    为了探索BiOCl光催化剂中OV的存在,对其进行了EPR测试。图 5a5c显示了由3种不同的铋玻璃制备的BiOCl光催化剂的OV。其中,BiOCl-BBZSN在黑暗和可见光照条件下都表现出最强的OV信号。此外,比较了BiOCl-BBZSN光催化剂在黑暗和光照条件下的差异,如图 5b所示,其OV信号没有显著变化,表明OV大部分来源于光催化材料本身。为了进一步探索BiOCl光催化剂OV的来源,我们还对原始铋玻璃进行了OV表征,如图 5d所示,3种铋玻璃在黑暗条件下g=2.003处也显示出强氧信号,证明制备的BiOCl光催化剂通过简单的一步化学反应方法保留了玻璃中的氧缺陷。不难看出,BBZSN玻璃具有最强的OV信号,这可能是其松散的网络结构导致了更多的氧缺陷,这也是BBZSN玻璃制备的BiOCl-BBZSN光催化剂OV浓度最高的原因。另外,对盐酸刻蚀前后的BBZSN玻璃和BiOCl-BBZSN的氧缺陷浓度进行对比分析发现(图 5e),在黑暗条件下,BiOCl材料的OV峰强几乎与原始铋玻璃的相同,这进一步表明BiOCl-BBZSN材料的OV由BBZSN玻璃原位引入。

    图 5

    图 5.  样品在黑暗和可见光照下的EPR谱图
    Figure 5.  EPR spectra of the samples under dark and visible light

    众所周知,OV的作用之一是调节光催化的带隙结构[27-28]图 6a显示了所制备的BiOCl光催化的吸收边与BiOCl-BBZ、BiOCl-BBZSr相比,BiOCl-BBZSN的吸收带边缘发生红移现象。图 6b显示了BiOCl光催化剂带隙能(Eg)的变化。值得注意的是,BiOCl-BBZSN的带隙能(2.95 eV)比其他2个样品更窄,表明OV的存在可以降低带隙值以吸收更多可见光。为了进一步显示光催化材料的导带和价带的位置,采用VB-XPS测试所制备样品的VB(价带)状态总密度。由图 6c可知,所得的BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN的价带位置(EVB)分别为2.49、2.62和2.72 eV,另外通过公式:ECB=Eg-EVB计算了光催化材料的导带位置(ECB),光催化材料的能带结构如图 6d所示。光催化剂在降解染料的过程中需要超氧自由基(·O2-)、羟基自由基(·OH)和空穴等活性物质,而价带位置越低,氧化性越强,越有利于活性基团的产生和对染料的氧化[29]。BiOCl-BBZSN材料具有比其他2个样品更低的价带位置,因此可以产生更多的氧活性物质,提高其降解RhB染料的能力。

    图 6

    图 6.  样品的(a) UV-Vis漫反射光谱、(b) (αhν)1/2 vs 曲线、(c) VB-XPS谱图和(d) 带隙结构
    Figure 6.  (a) UV-Vis diffuse reflectance spectra, (b) curves of (αhν)1/2 vs , (c) VB-XPS spectra, and (d) band gap structures of the samples

    通过降解实验进一步研究了OV对光催化性能的影响。暗箱处理30 min以测试样品对染料的吸附能力,如图 7所示,BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN对染料的吸附率分别为7.12%、8.23%和12.35%。在紫外光照射下,BiOCl-BBZSN、BiOCl-BBZSr和BiOCl-BBZ的RhB降解率分别达到95.7% (35 min)、95.3%(40 min)和93.5%(60 min),表明OV对可见光下光催化材料的降解有较大影响。所制备的BiOCl在可见光下仍具有对RhB染料的降解能力,这可部分归因于染料敏化作用。在可见光下照射100 min时,BiOCl-BBZSN的降解率可达到93.1%,而BiOCl-BBZ和BiOCl-BBZSr分别只有72.3% 和54.4%,这可归因于丰富的OV调整了带隙,增强了材料对可见光的吸收。此外,对不添加光催化剂的RhB染料进行光降解实验发现,在紫外和可见光下染料的浓度没有明显的变化,说明染料的降解是源于样品的光降解作用。OV作为捕获电子的活性位点,O2和H2O分子可以在OV处与光生电子反应产生活性氧(ROS)。如图 8a8b所示,在可见光照下观察到的EPR信号对应DMPO-·O2-和DMPO-·OH,其中BiOCl-BBZSN的ROS(·O2-、·OH)浓度最高,进一步说明BiOCl-BBZSN具有最好的光催化性能。

    图 7

    图 7.  BiOCl光催化剂在(a) 紫外光和(b) 可见光下的光催化活性
    Figure 7.  Photocatalytic activities of as-prepared BiOCl photocatalysts under (a) ultraviolet light and (b) visible light

    图 8

    图 8.  所制备BiOCl的(a) DMPO-·O2-和(b) DMPO-·OH的EPR谱图
    Figure 8.  EPR spectra of (a) DMPO-·O2- and (b) DMPO-·OH of as-prepared BiOCl

    光诱导载流子的分离和迁移效率是光催化降解的重要因素,其主要通过瞬态光电流响应(I-t)、电化学阻抗(EIS)和光致发光光谱(PL)表征。一般认为光电流密度越高,电子-空穴对分离效率越高[30]。通过考察不同催化剂在可见光照条件下产生的光电流强度,间接说明催化剂的载流子分离效率。实验结果如图 9a所示,BiOCl-BBZSN作为光电极所产生的光电流强度约为0.2 μA·cm-2,分别约为BiOCl-BBZSr和BiOCl-BBZ的2倍和6倍。这些研究结果进一步说明了富氧空位的引入提高了BiOCl-BBZSN中光生载流子的分离迁移效率,有助于光催化活性的提高。此外,由图 9b可知,与BiOCl-BBZ和BiOCl-BBZSr光催化剂相比,BiOCl-BBZSN具有更小的EIS半径,这意味着载流子迁移到表面的阻力更小。另外,使用PL谱图来确认电荷复合率(图 9c),较低的PL强度和较长的寿命与较低的电荷载流子复合率有关。BiOCl-BBZSN在468 nm附近的发光强度明显最弱,表明由BBZSN铋玻璃制备的BiOCl具有更丰富的OV,可以极大地促进光诱导载流子的空间分离,减少电子-空穴对的复合,从而进一步提高光催化剂的降解性能。

    图 9

    图 9.  BiOCl光催化剂的(a) 瞬态光电流响应、(b) EIS谱图和(c) PL谱图
    Figure 9.  (a) Transient photocurrent responses, (b) EIS spectra, and (c) PL spectra of BiOCl photocatalysts

    采用简单的一步化学反应法制备富氧空位的BiOCl光催化剂。实验结果表明,光催化剂的OV主要源于玻璃物种的原始氧缺陷。其中,用BBZSN玻璃制备的BiOCl-BBZSN光催化剂染料的降解率最高,这是因为BBZSN玻璃中引入了更多的网络外体,使玻璃结构最松散,引起更多的氧缺陷。富氧缺陷的存在调节了BiOCl材料的能带结构并且通过捕获电子加速了电子-空穴对的分离,从而改善材料的光催化降解性能。该研究在制备方法和所用铋原料方面均具有创新性,可为高效光催化剂的工业化大规模制备作出贡献。


    1. [1]

      O'Keeffe M, Yaghi O M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets[J]. Chem. Rev., 2012,112:675-702. doi: 10.1021/cr200205j

    2. [2]

      Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. The chemistry and applications of metal -organic frameworks[J]. Science, 2013,3411230444. doi: 10.1126/science.1230444

    3. [3]

      Li J R, Sculley J, Zhou H C. Metal -organic frameworks for separations[J]. Chem. Rev., 2012,112:869-932. doi: 10.1021/cr200190s

    4. [4]

      Zhao J P, Xu J, Han S D, Wang Q L, Bu X H. A Niccolite structural multiferroic metal -organic framework possessing four different types of bistability in response to dielectric and magnetic modulation[J]. Adv. Mater., 2017,291606966. doi: 10.1002/adma.201606966

    5. [5]

      JU Z F, YUAN D Q. Initial theoretical evaluation of pore structure for metal-organic frameworks[J]. Chinese J. Inorg. Chem., 2013,29(8):1633-1638.  

    6. [6]

      Li A L, Gao Q, Xu J, Bu X H. Proton-conductive metalorganic frameworks: Recent advances and perspectives[J]. Coord. Chem. Rev., 2017,344:54-82. doi: 10.1016/j.ccr.2017.03.027

    7. [7]

      Qiu X, Zhong X, Bai C H, Li Y W. Encapsulation of a metal-organic polyhedral in the pores of a metal -organic framework[J]. J. Am. Chem. Soc., 2016,138(4):1138-1141. doi: 10.1021/jacs.5b12189

    8. [8]

      Rojas S, Rodríguez-Diéguez A, Horcajada P. Metal -organic frameworks in agriculture[J]. ACS Appl. Mater. Interfaces, 2022,14(15):16983-17007. doi: 10.1021/acsami.2c00615

    9. [9]

      Thorarinsdottir A E, Harris T D. Metal -organic framework magnets[J]. Chem. Rev., 2020,120(16):8716-8789. doi: 10.1021/acs.chemrev.9b00666

    10. [10]

      Zhao X, Wang Y X, Li D S, Bu X H, Feng P Y. Metal-organic frameworks for separation[J]. Adv. Mater., 2018,301705189. doi: 10.1002/adma.201705189

    11. [11]

      Li R J, Li M, Zhou X P, Li D, O'Keeffe M. A highly stable MOF with a rod SBU and a tetracarboxylate linker: Unusual topology and CO2adsorption behaviour under ambient conditions[J]. Chem. Commun., 2014,50:4047-4049. doi: 10.1039/C3CC49684H

    12. [12]

      Wang Z, Li X Y, Liu L W, Yu S Q, Feng Z Y, Tung C H, Sun D. Beyond clusters: Supramolecular networks self-assembled from nano-sized silver clusters and inorganic anions[J]. Chem. -Eur. J., 2016,22:6830-6836. doi: 10.1002/chem.201504728

    13. [13]

      Lusi M, Fechine P B A, Chen K J, Perry J J, Zaworotko M J. A rare cationic building block that generates a new type of polyhedral network with"cross-linked"topology[J]. Chem. Commun., 2016,52:4160-4162. doi: 10.1039/C5CC10203K

    14. [14]

      Ahmed A, McHugh D, Papatriantafyllopoulou C. Synthesis and biomedical applications of highly porous metal -organic frameworks[J]. Molecules, 2022,27:6585-6595. doi: 10.3390/molecules27196585

    15. [15]

      Wu G D, Huang J H, Zang Y, He J, Xu G. Porous field-effect transistors based on a semiconductive metal -organic framework[J]. J. Am. Chem. Soc., 2017,139(4):1360-1363. doi: 10.1021/jacs.6b08511

    16. [16]

      Shu Y, Ye Q Y, Dai T, Xu Q, Hu X Y. Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing[J]. ACS Sens., 2021,6(3):641-658. doi: 10.1021/acssensors.0c02562

    17. [17]

      Guo B B, Yin J C, Li N, Fu Z X, Han X, Xu J, Bu X H. Recent progress in luminous particle -encapsulated host -guest metal -organic frameworks for optical applications[J]. Adv. Opt. Mater., 2021,92100283. doi: 10.1002/adom.202100283

    18. [18]

      Xu D D, Dong W W, Li M K, Han H M, Zhao J, Li D S, Zhang Q H. Encapsulating organic dyes in metal -organic frameworks for color -tunable and high -efficiency white-light-emitting properties[J]. Inorg. Chem., 2022,61(51):21107-21114. doi: 10.1021/acs.inorgchem.2c03736

    19. [19]

      Tao X L, Pan M C, Yang X, Yuan Y, Zhuo Y. CDs assembled metal-organic framework: Exogenous coreactant -free biosensing platform with pore confinement -enhanced electrochemiluminescence[J]. Chin. Chem. Lett., 2022,33(11):4803-4807. doi: 10.1016/j.cclet.2022.01.010

    20. [20]

      Firmino A D G, Figueira F, Tome J P C, Paz F A A, Rocha J. Metal-organic frameworks assembled from tetraphosphonic ligands and lanthanides[J]. Coord. Chem. Rev., 2018,355:133-149. doi: 10.1016/j.ccr.2017.08.001

    21. [21]

      Jia J G, Zheng L M. Metal -organic nanotubes: Designs, structures and functions[J]. Coord. Chem. Rev., 2020,403213083. doi: 10.1016/j.ccr.2019.213083

    22. [22]

      Weng G G, Zheng L M. Chiral metal phosphonates: Assembly, structures and functions[J]. Sci. China Chem., 2020,63(5):619-636. doi: 10.1007/s11426-020-9707-4

    23. [23]

      Liu B, Liu J C, Shen Y, Feng J S, Bao S S, Zheng L M. Polymorphic layered copper phosphonates: Exfoliation and proton conductivity studies[J]. Dalton Trans., 2019,48:6539-6545. doi: 10.1039/C9DT00970A

    24. [24]

      Huang J, Ding H M, Xu Y, Zeng D, Zhu H, Zang D M, Bao S S, Ma Y Q, Zheng L M. Chiral expression from molecular to macroscopic level via pH modulation in terbium coordination compounds[J]. Nat. Commun., 2017,8:2131-2142. doi: 10.1038/s41467-017-02260-2

    25. [25]

      Huang X D, Wen G H, Bao S S, Jia J G, Zheng L M. Thermo -and light -triggered reversible interconversion of dysprosium -anthracene complexes and their responsive optical, magnetic and dielectric properties[J]. Chem. Sci., 2021,12:929-937. doi: 10.1039/D0SC04851H

    26. [26]

      Wen G H, Chen X M, Xu K, Xu X J, Bao S S, Zheng L M. Uranyl phosphonates: Crystalline materials and nanosheets for temperature sensing[J]. Dalton Tran., 2021,50:17129-17139. doi: 10.1039/D1DT02977K

    27. [27]

      Zeng D, Ren M, Bao S S, Cai Z S, Xu C, Zheng L M. Polymorphic lanthanide phosphonates showing distinct magnetic behavior[J]. Inorg. Chem., 2016,55(11):5297-5304. doi: 10.1021/acs.inorgchem.6b00280

    28. [28]

      Li G M, Xu F, Han S D, Pan J, Wang G M. Hybrid photochromic lanthanide phosphonate with multiple photoresponsive functionalities[J]. Inorg. Chem., 2022,61(21):8379-8385. doi: 10.1021/acs.inorgchem.2c01217

    29. [29]

      Fu R B, Hua S G, Wu X T. Rapid and sensitive detection of nitroaro-matic explosives by using new 3D lanthanide phosphonates[J]. J. Mater. Chem. A, 2017,5:1952-1956. doi: 10.1039/C6TA10152F

    30. [30]

      Tang S F, Song J L, Li X L, Mao J G. Luminescent lanthanide(Ⅲ) carboxylate -phosphonates with helical tunnels[J]. Cryst. Growth Des., 2006,6(10):2322-2326. doi: 10.1021/cg060248l

    31. [31]

      Zhou T H, Yi F Y, Li P X, Mao J G. Synthesis, crystal structures, and luminescent properties of two series of new lanthanide(Ⅲ) amino-carboxylate-phosphonates[J]. Inorg. Chem., 2010,49(3):905-915. doi: 10.1021/ic901621x

    32. [32]

      Tang S F, Song J L, Mao J G. Syntheses, crystal structures, and characterizations of a series of new layered lanthanide carboxylate-phos-phonates[J]. Eur. J. Inorg. Chem., 2006:2011-2019.

    33. [33]

      Ayi A A, Kinnibrugh T L, Clearfield A. Hydrothermal synthesis and structural characterization of ammonium ion-templated lanthanide(Ⅲ) carboxylate-phosphonates[J]. Front. Chem., 2014,2:1-8.

    34. [34]

      Liu B, Xu Y, Bao S S, Huang X D, Liu M, Zheng L M. Enantioen-riched cobalt phosphonate containing Δ -type chains and showing slow magnetization relaxation[J]. Inorg. Chem., 2016,55:9521-9523. doi: 10.1021/acs.inorgchem.6b01854

    35. [35]

      Eliseevaa S V, Bünzli J C. Lanthanide luminescence for functional materials and bio-sciences[J]. Chem. Soc. Rev., 2010,39:189-227. doi: 10.1039/B905604C

    36. [36]

      Kariaka N S, Trush V A, Dyakonenko V V, Shishkina S V, Smola S S, Rusakova N V, Sliva T Y, Gawryszewska P, Carneiro Neto A N, Malta O L, Amirkhanov V M. New luminescent lanthanide tetrakis-complexes NEt4[LnL4] based on dimethyl-N-benzoylamidophos-phate[J]. ChemPhysChem, 2022,23e202200129. doi: 10.1002/cphc.202200129

    1. [1]

      O'Keeffe M, Yaghi O M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets[J]. Chem. Rev., 2012,112:675-702. doi: 10.1021/cr200205j

    2. [2]

      Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. The chemistry and applications of metal -organic frameworks[J]. Science, 2013,3411230444. doi: 10.1126/science.1230444

    3. [3]

      Li J R, Sculley J, Zhou H C. Metal -organic frameworks for separations[J]. Chem. Rev., 2012,112:869-932. doi: 10.1021/cr200190s

    4. [4]

      Zhao J P, Xu J, Han S D, Wang Q L, Bu X H. A Niccolite structural multiferroic metal -organic framework possessing four different types of bistability in response to dielectric and magnetic modulation[J]. Adv. Mater., 2017,291606966. doi: 10.1002/adma.201606966

    5. [5]

      JU Z F, YUAN D Q. Initial theoretical evaluation of pore structure for metal-organic frameworks[J]. Chinese J. Inorg. Chem., 2013,29(8):1633-1638.  

    6. [6]

      Li A L, Gao Q, Xu J, Bu X H. Proton-conductive metalorganic frameworks: Recent advances and perspectives[J]. Coord. Chem. Rev., 2017,344:54-82. doi: 10.1016/j.ccr.2017.03.027

    7. [7]

      Qiu X, Zhong X, Bai C H, Li Y W. Encapsulation of a metal-organic polyhedral in the pores of a metal -organic framework[J]. J. Am. Chem. Soc., 2016,138(4):1138-1141. doi: 10.1021/jacs.5b12189

    8. [8]

      Rojas S, Rodríguez-Diéguez A, Horcajada P. Metal -organic frameworks in agriculture[J]. ACS Appl. Mater. Interfaces, 2022,14(15):16983-17007. doi: 10.1021/acsami.2c00615

    9. [9]

      Thorarinsdottir A E, Harris T D. Metal -organic framework magnets[J]. Chem. Rev., 2020,120(16):8716-8789. doi: 10.1021/acs.chemrev.9b00666

    10. [10]

      Zhao X, Wang Y X, Li D S, Bu X H, Feng P Y. Metal-organic frameworks for separation[J]. Adv. Mater., 2018,301705189. doi: 10.1002/adma.201705189

    11. [11]

      Li R J, Li M, Zhou X P, Li D, O'Keeffe M. A highly stable MOF with a rod SBU and a tetracarboxylate linker: Unusual topology and CO2adsorption behaviour under ambient conditions[J]. Chem. Commun., 2014,50:4047-4049. doi: 10.1039/C3CC49684H

    12. [12]

      Wang Z, Li X Y, Liu L W, Yu S Q, Feng Z Y, Tung C H, Sun D. Beyond clusters: Supramolecular networks self-assembled from nano-sized silver clusters and inorganic anions[J]. Chem. -Eur. J., 2016,22:6830-6836. doi: 10.1002/chem.201504728

    13. [13]

      Lusi M, Fechine P B A, Chen K J, Perry J J, Zaworotko M J. A rare cationic building block that generates a new type of polyhedral network with"cross-linked"topology[J]. Chem. Commun., 2016,52:4160-4162. doi: 10.1039/C5CC10203K

    14. [14]

      Ahmed A, McHugh D, Papatriantafyllopoulou C. Synthesis and biomedical applications of highly porous metal -organic frameworks[J]. Molecules, 2022,27:6585-6595. doi: 10.3390/molecules27196585

    15. [15]

      Wu G D, Huang J H, Zang Y, He J, Xu G. Porous field-effect transistors based on a semiconductive metal -organic framework[J]. J. Am. Chem. Soc., 2017,139(4):1360-1363. doi: 10.1021/jacs.6b08511

    16. [16]

      Shu Y, Ye Q Y, Dai T, Xu Q, Hu X Y. Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing[J]. ACS Sens., 2021,6(3):641-658. doi: 10.1021/acssensors.0c02562

    17. [17]

      Guo B B, Yin J C, Li N, Fu Z X, Han X, Xu J, Bu X H. Recent progress in luminous particle -encapsulated host -guest metal -organic frameworks for optical applications[J]. Adv. Opt. Mater., 2021,92100283. doi: 10.1002/adom.202100283

    18. [18]

      Xu D D, Dong W W, Li M K, Han H M, Zhao J, Li D S, Zhang Q H. Encapsulating organic dyes in metal -organic frameworks for color -tunable and high -efficiency white-light-emitting properties[J]. Inorg. Chem., 2022,61(51):21107-21114. doi: 10.1021/acs.inorgchem.2c03736

    19. [19]

      Tao X L, Pan M C, Yang X, Yuan Y, Zhuo Y. CDs assembled metal-organic framework: Exogenous coreactant -free biosensing platform with pore confinement -enhanced electrochemiluminescence[J]. Chin. Chem. Lett., 2022,33(11):4803-4807. doi: 10.1016/j.cclet.2022.01.010

    20. [20]

      Firmino A D G, Figueira F, Tome J P C, Paz F A A, Rocha J. Metal-organic frameworks assembled from tetraphosphonic ligands and lanthanides[J]. Coord. Chem. Rev., 2018,355:133-149. doi: 10.1016/j.ccr.2017.08.001

    21. [21]

      Jia J G, Zheng L M. Metal -organic nanotubes: Designs, structures and functions[J]. Coord. Chem. Rev., 2020,403213083. doi: 10.1016/j.ccr.2019.213083

    22. [22]

      Weng G G, Zheng L M. Chiral metal phosphonates: Assembly, structures and functions[J]. Sci. China Chem., 2020,63(5):619-636. doi: 10.1007/s11426-020-9707-4

    23. [23]

      Liu B, Liu J C, Shen Y, Feng J S, Bao S S, Zheng L M. Polymorphic layered copper phosphonates: Exfoliation and proton conductivity studies[J]. Dalton Trans., 2019,48:6539-6545. doi: 10.1039/C9DT00970A

    24. [24]

      Huang J, Ding H M, Xu Y, Zeng D, Zhu H, Zang D M, Bao S S, Ma Y Q, Zheng L M. Chiral expression from molecular to macroscopic level via pH modulation in terbium coordination compounds[J]. Nat. Commun., 2017,8:2131-2142. doi: 10.1038/s41467-017-02260-2

    25. [25]

      Huang X D, Wen G H, Bao S S, Jia J G, Zheng L M. Thermo -and light -triggered reversible interconversion of dysprosium -anthracene complexes and their responsive optical, magnetic and dielectric properties[J]. Chem. Sci., 2021,12:929-937. doi: 10.1039/D0SC04851H

    26. [26]

      Wen G H, Chen X M, Xu K, Xu X J, Bao S S, Zheng L M. Uranyl phosphonates: Crystalline materials and nanosheets for temperature sensing[J]. Dalton Tran., 2021,50:17129-17139. doi: 10.1039/D1DT02977K

    27. [27]

      Zeng D, Ren M, Bao S S, Cai Z S, Xu C, Zheng L M. Polymorphic lanthanide phosphonates showing distinct magnetic behavior[J]. Inorg. Chem., 2016,55(11):5297-5304. doi: 10.1021/acs.inorgchem.6b00280

    28. [28]

      Li G M, Xu F, Han S D, Pan J, Wang G M. Hybrid photochromic lanthanide phosphonate with multiple photoresponsive functionalities[J]. Inorg. Chem., 2022,61(21):8379-8385. doi: 10.1021/acs.inorgchem.2c01217

    29. [29]

      Fu R B, Hua S G, Wu X T. Rapid and sensitive detection of nitroaro-matic explosives by using new 3D lanthanide phosphonates[J]. J. Mater. Chem. A, 2017,5:1952-1956. doi: 10.1039/C6TA10152F

    30. [30]

      Tang S F, Song J L, Li X L, Mao J G. Luminescent lanthanide(Ⅲ) carboxylate -phosphonates with helical tunnels[J]. Cryst. Growth Des., 2006,6(10):2322-2326. doi: 10.1021/cg060248l

    31. [31]

      Zhou T H, Yi F Y, Li P X, Mao J G. Synthesis, crystal structures, and luminescent properties of two series of new lanthanide(Ⅲ) amino-carboxylate-phosphonates[J]. Inorg. Chem., 2010,49(3):905-915. doi: 10.1021/ic901621x

    32. [32]

      Tang S F, Song J L, Mao J G. Syntheses, crystal structures, and characterizations of a series of new layered lanthanide carboxylate-phos-phonates[J]. Eur. J. Inorg. Chem., 2006:2011-2019.

    33. [33]

      Ayi A A, Kinnibrugh T L, Clearfield A. Hydrothermal synthesis and structural characterization of ammonium ion-templated lanthanide(Ⅲ) carboxylate-phosphonates[J]. Front. Chem., 2014,2:1-8.

    34. [34]

      Liu B, Xu Y, Bao S S, Huang X D, Liu M, Zheng L M. Enantioen-riched cobalt phosphonate containing Δ -type chains and showing slow magnetization relaxation[J]. Inorg. Chem., 2016,55:9521-9523. doi: 10.1021/acs.inorgchem.6b01854

    35. [35]

      Eliseevaa S V, Bünzli J C. Lanthanide luminescence for functional materials and bio-sciences[J]. Chem. Soc. Rev., 2010,39:189-227. doi: 10.1039/B905604C

    36. [36]

      Kariaka N S, Trush V A, Dyakonenko V V, Shishkina S V, Smola S S, Rusakova N V, Sliva T Y, Gawryszewska P, Carneiro Neto A N, Malta O L, Amirkhanov V M. New luminescent lanthanide tetrakis-complexes NEt4[LnL4] based on dimethyl-N-benzoylamidophos-phate[J]. ChemPhysChem, 2022,23e202200129. doi: 10.1002/cphc.202200129

  • 加载中
    1. [1]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    6. [6]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    7. [7]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    8. [8]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    19. [19]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    20. [20]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

Metrics
  • PDF Downloads(3)
  • Abstract views(465)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return