Citation: Yu-Ying BAI, Chun-Shui WANG, Jia-Hao LI, Xing-Xing LIU, Xiang-Feng CHU, Shi-Ming LIANG. La3+ doped CaFe2O4 materials: Preparation and detection of ultra-low concentrations of formaldehyde at room temperature[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1898-1904. doi: 10.11862/CJIC.2023.165 shu

La3+ doped CaFe2O4 materials: Preparation and detection of ultra-low concentrations of formaldehyde at room temperature

Figures(6)

  • La3+ doped CaCaFe2O4 materials have been synthesized by the electrospinning method. The structure and morphology of obtained samples were characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Subsequently, the influence of the doping amount (mass fraction) of La3+ on the gas-sensing properties of CaFe2O4 was investigated. The results indicated that 3% La3+ doped CaCaFe2O4 materials exhibited the highest response value (Ra/Rg=14.1) to 100 μL·L-1 formaldehyde at room temperature. More importantly, the detection limit was as low as 0.1 nL·L-1, and the response/ recovery time only was 4.3 s/8.4 s.
  • 加载中
    1. [1]

      Cogliano V J, Grosse Y, Baan R A, Straif K, Secretan M B, Ghissassi F E. Meeting Report: Summary of IARC monographs on formaldehyde, 2-butoxyethanol, and 1-tert-butoxy-2-propanol[J]. Environ. Health Perspect., 2005,113(9):1205-1208. doi: 10.1289/ehp.7542

    2. [2]

      BU X, BAO S J, CHU X F, LIANG S M, WANG C S, BAI Y Y. Preparation and gas-sensing properties of MoS2/Cd2SnO4 composite materials[J]. Chinese J. Inorg. Chem., 2022,38(11):2173-2180. doi: 10.11862/CJIC.2022.209

    3. [3]

      Wi S, Kim M G, Myung S W, Baik Y K, Lee K B. Evaluation and analysis of volatile organic compounds and formaldehyde emission of building products in accordance with legal standards: A statistical experimental study[J]. J. Hazard. Mater., 2020,393122381. doi: 10.1016/j.jhazmat.2020.122381

    4. [4]

      Qu G P, Fan G J, Zhou M Y, Rong X R, Li T, Zhang R, Sun J, Chen D L. Graphene-modified ZnO nanostructures for low-temperature NO2 sensing[J]. ACS Omega, 2019,4:4221-4232. doi: 10.1021/acsomega.8b03624

    5. [5]

      WU H Y, GAN Z Q, CHU X F, LIANG S M, HE L F. Preparation and gas-sensing properties of one-dimensional Ga2O3/SnO2 nanofibers[J]. Chinese J. Inorg. Chem., 2020,36(2):309-316. doi: 10.11862/CJIC.2020.021

    6. [6]

      Gao X M, Sun Y, Zhu C L, Li C Y, Ouyang Q Y, Chen Y J. Highly sensitive and selective H2S sensor based on porous ZnFe2O4 nanosheets[J]. Sens. Actuator B-Chem., 2017,246:7662-7672.

    7. [7]

      Šutka A, Kodu M, Pärna R, Saar R, Juhnevica I, Jaaniso R, Kisand V. Orthorhombic CaFe2O4: A promising p-type gas sensor[J]. Sens. Actuator B-Chem., 2016,224:260-265. doi: 10.1016/j.snb.2015.10.041

    8. [8]

      Huang L L, Fan Z H, Li X D, Wang S, Guo W W. Facile synthesis of CaFe2O4 nanocubes for formaldehyde sensor[J]. Mater. Lett., 2021,288129351. doi: 10.1016/j.matlet.2021.129351

    9. [9]

      Guo W W, Huang L L, Liu X C, Wang J, Zhang J. Enhanced isoprene gas sensing performance based on p-CaFe2O4/n-ZnFe2O4 heterojunction composites[J]. Sens. Actuator B-Chem., 2022,354131243. doi: 10.1016/j.snb.2021.131243

    10. [10]

      Bhattacharya A, Chu X F, Gao Q, Li X, Dong Y P, Liang S M, Chakraborty A K. Influence of Gd3+ incorporation on ethanol sensing properties of barium stannate microrod films prepared by coprecipitation method[J]. Appl. Surf. Sci., 2020,504144289. doi: 10.1016/j.apsusc.2019.144289

    11. [11]

      Bhattacharya A, Jiang Y F, Gao Q, Chu X F, Dong Y P, Liang S M, Chakraborty A K. Highly responsive and selective formaldehyde sensor based on La3+-doped barium stannate microtubes prepared by electrospinning[J]. J. Mater. Res., 2019,34(12):2067-2077. doi: 10.1557/jmr.2019.95

    12. [12]

      He L F, Gao C P, Yang L, Zhang K, Chu X F, Liang S M, Zeng D W. Facile synthesis of MgGa2O4/graphene composites for room temperature acetic acid gas sensing[J]. Sens. Actuator B-Chem., 2020,306127453. doi: 10.1016/j.snb.2019.127453

    13. [13]

      Wang J M, Wang Y N, Liu Y L, Li S, Cao F, Qin G W. Fabrication of CaFe2O4 nanofibers via electrospinning method with enhanced visible light photocatalytic activity[J]. Funct. Mater. Lett., 2017,10(5)1750058. doi: 10.1142/S1793604717500588

    14. [14]

      Liu W, Xie Y L, Chen T X, Lu Q X, Rehman S U, Zhu L. Rationally designed mesoporous In2O3 nanofibers functionalized Pt catalysts for high-performance acetone gas sensors[J]. Sens. Actuator B-Chem., 2019,298126871. doi: 10.1016/j.snb.2019.126871

    15. [15]

      Xiang J, Chen X, Zhang X K, Gong L, Zhang Y M, Zhang K Y. Preparation and characterization of Ba-doped LaFeO3 nanofibers by electrospinning and their ethanol sensing properties[J]. Mater. Chem. Phys., 2018,213:122-129. doi: 10.1016/j.matchemphys.2018.04.024

    16. [16]

      Stipp S L, Hochella M F. Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED)[J]. Geochim. Cosmochim. Acta, 1991,55:1723-1736. doi: 10.1016/0016-7037(91)90142-R

    17. [17]

      Wu J X, Zou S, Wang B, Feng C H, Yoshinobu T. Enhanced acetone sensing properties of W-doped ZnFe2O4 electrospinning nanofibers[J]. J. Alloy. Compd., 2023,938168440. doi: 10.1016/j.jallcom.2022.168440

    18. [18]

      Siddiqui H, Shrivastava M, Parra M R, Pandey P, Ayaz S, Qureshi M. The effect of La3+ ion doping on the crystallographic, optical and electronic properties of CuO nanorods[J]. Mater. Lett., 2018,229:225-228. doi: 10.1016/j.matlet.2018.07.029

    19. [19]

      Kou X Y, Meng F Q, Chen K, Wang T S, Sun P, Liu F M, Yan X, Sun Y F, Liu F M, Shimanoe K, Lu G Y. High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers[J]. Sens. Actuator B-Chem., 2020,320128292. doi: 10.1016/j.snb.2020.128292

    20. [20]

      Gao F, Qin G H, Li Y H, Jiang Q P, Luo L, Zhao K, Liu Y J, Zhao H Y. One-pot synthesis of La-doped SnO2 layered nanoarrays with an enhanced gas-sensing performance toward acetone[J]. RSC Adv., 2016,6:10298-10310. doi: 10.1039/C5RA27270J

    21. [21]

      Haunsbhavi K, Kumar K D A, Mele P, Aldossary O M, Ubaidullah M, Mahesh H M, Murahari P, Angadi B. Pseudo n-type behaviour of nickel oxide thin film at room temperature towards ammonia sensing[J]. Ceram. Int., 2021,47:13693-13703. doi: 10.1016/j.ceramint.2021.01.230

    22. [22]

      Liu H Y, Wang Z Y, Cao G L, Pan G F, Yang X L, Qiu M Y, Sun C X, Shao J K, Li Z H, Zhang H. Construction of hollow NiO/ZnO p-n heterostructure for ultrahigh performance toluene gas sensor[J]. Mater. Sci. Semicond. Process, 2022,141106435. doi: 10.1016/j.mssp.2021.106435

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    5. [5]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    12. [12]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    13. [13]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    14. [14]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    15. [15]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(1)
  • Abstract views(416)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return