Citation: Yue WANG, Xian-Zhen LI, Yu-Jie LAI, Zheng NIU. Zirconium-based metal-organic framework for tetramethylsilane/isopentane separation[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1841-1847. doi: 10.11862/CJIC.2023.163 shu

Zirconium-based metal-organic framework for tetramethylsilane/isopentane separation

  • Corresponding author: Zheng NIU, zhengniu@suda.edu.cn
  • Received Date: 7 May 2023
    Revised Date: 16 June 2023

Figures(5)

  • In the semiconductor industry, efficient capture of isopentane from tetramethylsilane (TMS)/isopentane mixtures is very important. Herein, we chose MOF-801 with cages to achieve the separation of isopentane from TMS by using the difference in their adsorption capacity for TMS and isopentane. The gas adsorption test results showed that the isopentane uptake amount of MOF-801 was 2.56 mmol·g-1 and the TMS was 1.20 mmol·g-1 at 298 K and 60 kPa. Ideal adsorption solution theory (IAST) calculations showed that its separation selectivity for the TMS/isopentane (95:5, volume ratio) mixture was 105.8. The great separation performance of MOF-801 was further verified by the liquid-phase adsorption separation experiments, and the purity of the obtained TMS was greater than 99.98% (volume fraction).
  • 加载中
    1. [1]

      Furuya A, Yoneda K, Soda E, Yoshie T, Okamura H, Shimada M, Ohtsuka N, Ogawa S. Ultrathin pore-seal film by plasma enhanced chemical vapor deposition SiCH from tetramethylsilane[J]. J. Vac. Sci. Technol. B, 2005,23(6):2522-2525. doi: 10.1116/1.2132324

    2. [2]

      Grill A, Patel V. Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane[J]. J. Appl. Phys., 1999,85(6):3314-3318. doi: 10.1063/1.369677

    3. [3]

      Han L C M, Pan J S, Chen S M, Balasubramanian N, Shi J N, Wong L S, Foo P D. Characterization of carbon-doped SiO2 low k thin films-preparation by plasma-enhanced chemical vapor deposition from tetramethylsilane[J]. J. Electrochem. Soc., 2001,148(7):F148-F153. doi: 10.1149/1.1375797

    4. [4]

      HE Y G, WAN Y, CHANG X, WANG F, YUAN Z J, ZHAO X Z. Synthesis process and purification technology of high purity tetramethylsilane[J]. New Chem. Mater., 2021,49(6):262-264.  

    5. [5]

      Xu M, Sayasane T, Girard J M. Purification of silicon-containing materials: US10879530. 2005-03-10.

    6. [6]

      Yasuda H, Bumgarner M O, Marsh H C, Morosoff N. Plasma polymerization of some organic compounds and properties of the polymers[J]. J. Polym. Sci. Pol. Chem., 1976,14(1):195-224. doi: 10.1002/pol.1976.170140118

    7. [7]

      HU Q, ZHOU J H, CHENG J, ZHOU Z J, YANG W J. Study on the preparation of fumed silica by combustion of tetramethylsilane[J]. Energy Engineering, 2014(2):12-15.  

    8. [8]

      Chen S W, Wang Y S, Hu S Y, Lee W H, Chi C C, Wang Y L. A study of trimethylsilane (3MS) and tetramethylsilane (4MS) based α-SiCN: H/α-SiCO: H diffusion barrier films[J]. Materials, 2012,5(3):377-384.

    9. [9]

      Fonseca J L C, Apperley D C, Badyal J P S. Plasma polymerization of tetramethylsilane[J]. Chem. Mater., 1993,5(11):1676-1682. doi: 10.1021/cm00035a015

    10. [10]

      Naganawa Y, Sakamoto K, Nakajima Y. A general and selective synthesis of methylmonochlorosilanes from di-, tri-, and tetrachlorosilanes[J]. Org. Lett., 2021,23(2):601-606. doi: 10.1021/acs.orglett.0c04175

    11. [11]

      Lewis L N, Ward W J. The use of a fixed-bed reactor to evaluate the interactions of catalysts and promoters in the methyl chlorosilane reaction and to determine the effect of Cu in the form of the Eta phase on this reaction[J]. Ind. Eng. Chem. Res., 2002,41(3):397-402. doi: 10.1021/ie010166o

    12. [12]

      Wang A, Jiang Y Q, Chen W G, Yin H B, Liu Y J, Shen Y T, Jiang T S, Wu Z N. [BMIM]Cl-nAlCl3 ionic liquid-catalyzed redistribution reaction between methyltrichlorosilane and low-boiling residue to dimethyldichlorosilane[J]. J. Ind. Eng. Chem., 2012,18(1):237-242. doi: 10.1016/j.jiec.2011.11.023

    13. [13]

      Chang X, Wan Y, Zhao X, Yuan Z J, Zhao X Z, Li Y X, Guo S H, Yan D Z. Adsorptive separation of high purity tetramethylsilane on zeolites from low-boiling residues of dimethyldichlorosilane synthesis[J]. Mater. Chem. Phys., 2020,254(1)123522.

    14. [14]

      Wang T, Lin E, Peng Y L, Chen Y, Cheng P, Zhang Z J. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation[J]. Coord. Chem. Rev., 2020,423(15)213485.

    15. [15]

      Wang J X, Liang C C, Gu X W, Wen H M, Jiang C H, Li B, Qian G D, Chen B L. Recent advances in microporous metal-organic frameworks as promising adsorbents for gas separation[J]. J. Mater. Chem. A, 2022,10(35):17878-17916. doi: 10.1039/D2TA04835C

    16. [16]

      Lin R B, Xiang S C, Zhou W, Chen B L. Microporous metal-organic framework materials for gas separation[J]. Chem, 2020,6(2):337-363. doi: 10.1016/j.chempr.2019.10.012

    17. [17]

      Niu Z, Cui X L, Pham T, Lan P C, Xing H B, Forrest K A, Wojtas L, Space B, Ma S Q. A metal-organic framework based methane nano-trap for the capture of coal-mine methane[J]. Angew. Chem. Int. Ed., 2019,58(30):10138-10141. doi: 10.1002/anie.201904507

    18. [18]

      Chen Z J, Li P H, Anderson R, Wang X J, Zhang X, Robison L, Redfern L R, Moribe S, Islamoglu T, Gómez-Gualdrón D A, Yildirim T, Stoddart J F, Farha O K. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy[J]. Science, 2020,368(6488):297-303. doi: 10.1126/science.aaz8881

    19. [19]

      Li L Y, Yang L F, Wang J W, Zhang Z G, Yang Q W, Yang Y W, Ren Q L, Bao Z B. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework[J]. AICHE J., 2018,64(10):3681-3689. doi: 10.1002/aic.16335

    20. [20]

      Chen K J, Madden D G, Pham T, Forrest K A, Kumar A, Yang Q Y, Xue W, Space B, Perry Iv J J, Zhang J P, Chen X M, Zaworotko M J. Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2[J]. Angew. Chem. Int. Ed., 2016,55(35):10268-10272. doi: 10.1002/anie.201603934

    21. [21]

      Shi Z L, Tao Y, Wu J S, Zhang C Z, He H L, Long L L, Lee Y J, Li T, Zhang Y B. Robust metal-triazolate frameworks for CO2 capture from flue gas[J]. J. Am. Chem. Soc., 2020,142(6):2750-2754. doi: 10.1021/jacs.9b12879

    22. [22]

      Lyu H, Chen O I-F, Hanikel N, Hossain M I, Flaig R W, Pei X K, Amin A, Doherty M D, Impastato R K, Glover T G, Moore D R, Yaghi O M. Carbon dioxide capture chemistry of amino acid functionalized metal-organic frameworks in humid flue gas[J]. J. Am. Chem. Soc., 2022,144(5):2387-2396. doi: 10.1021/jacs.1c13368

    23. [23]

      ZHANG M X, ZHANG P P, WANG S, JIANG G M, CUI H H, TANG Y F. PCN-type metal-organic framework based on amide-inserted helical ligand and supramolecular building blocks: Structure and CO2 selective adsorption[J]. Chinese J. Inorg. Chem., 2022,38(3):423-429.  

    24. [24]

      ZHAO M, WU D, JIANG F L, CHEN Q H, HONG M C. A flexible ultramicroporous metal-organic framework for size-selective carbon dioxide capture constructed from a semirigid ligand[J]. Chinese J. Inorg. Chem., 2022,38(12):2459-2468.  

    25. [25]

      Cui X L, Chen K J, Xing H B, Yang Q W, Krishna R, Bao Z B, Wu H, Zhou W, Dong X L, Han Y, Li B, Ren Q L, Zaworotko M J, Chen B L. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016,353(6295):141-144. doi: 10.1126/science.aaf2458

    26. [26]

      Peng Y L, Pham T, Li P F, Wang T, Chen Y, Chen K J, Forrest K A, Space B, Cheng P, Zaworotko M J, Zhang Z J. Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene[J]. Angew. Chem. Int. Ed., 2018,57(34):10971-10975. doi: 10.1002/anie.201806732

    27. [27]

      Yang L F, Cui X L, Yang Q W, Qian S H, Wu H, Bao Z B, Zhang Z G, Ren Q L, Zhou W, Chen B L, Xing H B. A single-molecule propyne trap: Highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials[J]. Adv. Mater., 2018,30(10)1705374. doi: 10.1002/adma.201705374

    28. [28]

      CUI X L, XING H B. Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal, 2018,69(6):2339-2352.  

    29. [29]

      Lin R B, Li L B, Zhou H L, Wu H, He C H, Li S, Krishna R, Li J P, Zhou W, Chen B L. Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J]. Nat. Mater., 2018,17(12):1128-1133. doi: 10.1038/s41563-018-0206-2

    30. [30]

      Liang B, Zhang X, Xie Y, Lin R B, Krishna R, Cui H, Li Z Q, Shi Y S, Wu H, Zhou W, Chen B L. An ultramicroporous metal-organic framework for high sieving separation of propylene from propane[J]. J. Am. Chem. Soc., 2020,142(41):17795-17801. doi: 10.1021/jacs.0c09466

    31. [31]

      Cadiau A, Adil K, Bhatt P M, Belmabkhout Y, Eddaoudi M. A metal-organic framework-based splitter for separating propylene from propane[J]. Science, 2016,353(6295):137-140. doi: 10.1126/science.aaf6323

    32. [32]

      Geng S B, Lin E, Li X, Liu W S, Wang T, Wang Z F, Sensharma D, Darwish S, Andaloussi Y H, Pham T, Cheng P, Zaworotko M J, Chen Y, Zhang Z J. Scalable room-temperature synthesis of highly robust ethane-selective metal-organic frameworks for efficient ethylene purification[J]. J. Am. Chem. Soc., 2021,143(23):8654-8660. doi: 10.1021/jacs.1c02108

    33. [33]

      Zhu H, Wang Y, Wang X, Fan Z W, Wang H F, Niu Z, Lang J P. The design of MOF-based nano-trap for the efficient separation of propane and propylene[J]. Chem. Commun., 2023,59(38):5757-5760. doi: 10.1039/D3CC01296D

    34. [34]

      Liao P Q, Huang N Y, Zhang W X, Zhang J P, Chen X M. Controlling guest conformation for efficient purification of butadiene[J]. Science, 2017,356(6343):1193-1196. doi: 10.1126/science.aam7232

    35. [35]

      Yu L, Ullah S, Zhou K, Xia Q B, Wang H, Tu S, Huang J J, Xia H L, Liu X Y, Thonhauser T, Li J. A microporous metal-organic framework incorporating both primary and secondary building units for splitting alkane isomers[J]. J. Am. Chem. Soc., 2022,144(9):3766-3770. doi: 10.1021/jacs.1c12068

    36. [36]

      Chen Q, Xian S K, Dong X L, Liu Y Y, Wang H, Olson D H, Williams L J, Han Y, Bu X H, Li J. High-efficiency separation of n-hexane by a dynamic metal-organic framework with reduced energy consumption[J]. Angew. Chem. Int. Ed., 2021,60(19):10593-10597. doi: 10.1002/anie.202100707

    37. [37]

      Cui X L, Niu Z, Shan C, Yang L F, Hu J B, Wang Q J, Lan P C, Li Y J, Wojtas L, Ma S Q, Xing H B. Efficient separation of xylene isomers by a guest-responsive metal-organic framework with rotational anionic sites[J]. Nat. Commun., 2020,11(1)5456. doi: 10.1038/s41467-020-19209-7

    38. [38]

      Niu Z, Fan Z W, Pham T, Verma G, Forrest K A, Space B, Thallapally P K, Al-Enizi A M, Ma S Q. Self-adjusting metal-organic framework for efficient capture of trace xenon and krypton[J]. Angew. Chem. Int. Ed., 2022,61(11)e202117807. doi: 10.1002/anie.202117807

    39. [39]

      Zheng F, Guo L D, Chen R D, Chen L H, Zhang Z G, Yang Q W, Yang Y W, Su B G, Ren Q L, Bao Z B. Shell-like xenon nano-traps within angular anion-pillared layered porous materials for boosting Xe/Kr separation[J]. Angew. Chem. Int. Ed., 2022,61(20)e202116686. doi: 10.1002/anie.202116686

    40. [40]

      Furukawa H, Gándara F, Zhang Y B, Jiang J, Queen W L, Hudson M R, Yaghi O M. Water adsorption in porous metal-organic frameworks and related materials[J]. J. Am. Chem. Soc., 2014,136(11):4369-4381. doi: 10.1021/ja500330a

    41. [41]

      Chen Z, Feng L, Liu L, Bhatt P M, Adil K, Emwas A H, Assen A H, Belmabkhout Y, Han Y, Eddaoudi M. Enhanced separation of butane isomers via defect control in a fumarate/zirconium-based metal organic framework[J]. Langmuir, 2018,34(48):14546-14551.

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

Metrics
  • PDF Downloads(15)
  • Abstract views(1133)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return