Citation: Cun WANG, Xiao-Chuan ZOU, Yuan-Bo HUANG, Jing HU, Ming-Chuan DENG, Xia FENG. Electrochemical aptamer sensor for thrombin based on cerium complex signal probe[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1931-1940. doi: 10.11862/CJIC.2023.162 shu

Electrochemical aptamer sensor for thrombin based on cerium complex signal probe

  • Corresponding author: Xiao-Chuan ZOU, zxcvip2003@163.com
  • Received Date: 3 January 2023
    Revised Date: 17 September 2023

Figures(9)

  • In this work, a series of cerium coordination polymers (Ce-COPs) with different morphology and electro- chemical signals were synthesized by a simple hydrothermal method using Ce3+ as the central ion and N, N-dimethyl- formamide as the organic ligand through temperature regulation. The polyhedral Ce-COP with the largest electro- chemical signal was selected as the signal probe. Then, a sensitive thrombin (TB) aptamer sensor was designed through the specific recognition between TB and TB aptamer. Under the optimal experimental conditions, the linear range for TB detection was from 1.0 fmol·L-1 to 1.0 nmol·L-1, and the detection limit was 0.94 fmol·L-1. In addition, our method is similar to the results of commercial human thrombin (TM) ELISA reagent detection. In a word, our biosensor possesses good sensitivity, specificity, selectivity, and stability.
  • 加载中
    1. [1]

      Gómez-Arconada L, Díaz-Fernández A, Ferapontova E E. Ultrasensitive disposable apatasensor for reagentless electrocatalytic detection of thrombin: An O2-dependent hemin-G4-aptamer assay on gold screen-printed electrodes[J]. Talanta, 2022,245(11)123456.

    2. [2]

      Sun J F, Wang G X, Cheng H, Han Y F, Li Q, Jiang C. An antifouling electrochemical aptasensor based on hyaluronic acid functionalized polydopamine for thrombin detection in human serum[J]. Bioelectrochemistry, 2022,145108073. doi: 10.1016/j.bioelechem.2022.108073

    3. [3]

      LI D L, GU M Q, WANG M, CHI K N, ZHANG X, DENG Y, MA Y C, HU R, YANG Y H. Preparation of thrombin aptasensor based on the metal‑organic framework Fe‑MIL‑88NH2[J]. Chem. J. Chinese Universities, 2019,40(3):439-447.  

    4. [4]

      Huang Y, Zhao S L, Chen Z F, Shi M, Chen J, Liang H. An amplified chemiluminescence aptasensor based on bi-resonance energy transfer on gold nanoparticles and exonuclease Ⅲ-catalyzed target recycling[J]. Chem. Commun., 2012,48(97):11877-11879. doi: 10.1039/c2cc37130h

    5. [5]

      Liao X J, Zhang C Y, Machuki achwa J O, Wen X Q, Tang Q L, Shi H L, Gao F L. Proximity hybridization-triggered DNA assembly for label-free surface-enhanced Raman spectroscopic bioanalysis[J]. Anal. Chim. Acta, 2020,1139(47):42-49.

    6. [6]

      Cui H Y, Fu X Q, Yang L, Xing S, Wang X F. 2D titanium carbide nanosheets based fluorescent aptasensor for sensitive detection of thrombin[J]. Talanta, 2021,228(1)122219.

    7. [7]

      Su J, Liu W H, Chen S X, Deng W P, Dou Y Z, Zhao Z H, Li J Y, Li Z H, Yin H, Ding X T, Song S P. A carbon-based DNA framework nano-bio interface for biosensing with high sensitivity and a high signal-to-noise ratio[J]. ACS Sens., 2020,5(12):3979-3987. doi: 10.1021/acssensors.0c01745

    8. [8]

      Ma C, Cao Y, Gou X D, Jun J J. Recent progress in electrochemiluminescence sensing and imaging[J]. Anal. Chem., 2020,92(1):431-454. doi: 10.1021/acs.analchem.9b04947

    9. [9]

      Blasi D, Sarcina L, Tricase A, Stefanachi A, Leonetti F, Alberga D, Mangiatordi G F, Manoli K, Scamarcio G, Picca R A, Torsi L. Enhancing the sensitivity of biotinylated surfaces by tailoring the design of the mixed self-assembled monolayer synthesis[J]. ACS Omega, 2020,5(27):16762-16771. doi: 10.1021/acsomega.0c01717

    10. [10]

      Zheng Y N, Yuan Y L, Chai Y Q, Yuan R. L-cysteine induced manganese porphyrin electrocatalytic amplification with 3D DNA‑Au@Pt nanoparticles as nanocarriers for sensitive electrochemical aptasensor[J]. Biosens. Bioelectron., 2016,798:6-91.

    11. [11]

      Hu G B, Xiong C Y, Liang W B, Yang Y, Yao L Y, Huang W, Luo W, Yuan R, Xiao D R. Highly stable Ru-complex-grafted 2D metal-organic layer with superior electrochemiluminescent efficiency as a sensing platform for simple and ultrasensitive detection of mucin 1[J]. Biosens. Bioelectron., 2019,135:95-101. doi: 10.1016/j.bios.2019.03.026

    12. [12]

      Wang C, Han Q, Mo F J, Chen M, Xiong Z W, Fu Y Z. Novel luminescent nanostructured coordination polymer: Facile fabrication and application in electrochemiluminescence biosensor for microRNA-141 detection[J]. Anal. Chem., 2020,92(18):12145-12151. doi: 10.1021/acs.analchem.0c00130

    13. [13]

      Zhang X X, Liao F S, Wang M, Zhang J, Xu B X, Zhang L, Xiong J, Xiong W. Enzyme-free recycling amplification-based sensitive electrochemical thrombin aptasensor[J]. Electroanalysis, 2021,33:1152-1159. doi: 10.1002/elan.202060496

    14. [14]

      Chen Y, Li S B, Zhang L, Jing T, Wang J X, Zhao L J, Li F B, Li C, Sun J Y. Facile and fast synthesis of three-dimensional Ce-MOF/Ti3C2TX MXene composite for high performance electrochemical sensing of L-tryptophan[J]. J. Solid. State. Chem., 2022,308122919. doi: 10.1016/j.jssc.2022.122919

    15. [15]

      Zhang L, Sun M, Jing T, Li S B, Ma H Y. A facile electrochemical sensor based on green synthesis of Cs/Ce-MOF for detection of tryptophan in human serum[J]. Colloid. Surface A, 2022,648(5)129225.

    16. [16]

      Tu X L, Xie Y, Ma X, Gao F, Gong L, Wang D W, Lu L M, Liu G B, Yu Y F, Huang X G. Highly stable reduced graphene oxide-encapsulated Ce-MOF composite as sensing material for electrochemically detecting dichlorophen[J]. J. Electroanal. Chem., 2019,848(1)113268.

    17. [17]

      Huang H P, Chen Y N, Chen Z Z, Chen J L, Hu Y M, Zhu J J. Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol[J]. J. Hazard. Mater., 2021,416(15)125895.

    18. [18]

      Chen F, Wang Y M, Guo W W, Yin X B. Color-tunable lanthanide metal-organic framework gels[J]. Chem Sci., 2019,10(6):1644-1650. doi: 10.1039/C8SC04732D

    19. [19]

      Jing P, Xu W J, Yi H Y, Wu Y M, Bai L J, Yuan R. An amplified electrochemical aptasensor for thrombin detection based on pseudobienzymic Fe3O4-Au nanocomposites and electroactive hemin/G-quadruplex as signal enhancers[J]. Analyst, 2014,139(7):1756-1761. doi: 10.1039/c3an02237d

    20. [20]

      Shi J, Claussen J C, McLamore E S, Haque A U, Jaroch D, Diggs A R, Calvo-Marzal P, Rickus J L, Porterfield D M. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors[J]. Nanotechnol., 2011,22355502. doi: 10.1088/0957-4484/22/35/355502

    21. [21]

      Zhang J, Song S P, Wang L, H , Pan D, Fan C H. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA[J]. Nat. Protoc., 2007,2:2888-2895. doi: 10.1038/nprot.2007.419

    22. [22]

      Jiang J Z, Cai Q, Deng M H. Construction of electrochemical aptamer sensor based on Pt-coordinated titanium-based porphyrin MOF for thrombin detection[J]. Front. Chem., 2022,9812983. doi: 10.3389/fchem.2021.812983

    23. [23]

      Zhang Q X, Fan G C, Chen W, Liu Q, Zhang X, Zhang X X, Liu Q Y. Electrochemical sandwich-type thrombin aptasensor based on dual signal amplification strategy of silver nanowires and hollow Au-CeO2[J]. Biosens. Bioelectron., 2020,150111846. doi: 10.1016/j.bios.2019.111846

    24. [24]

      Zhu J, Gan H Y, Wu J, Ju H X. Molecular machine powered surface programmatic chain reaction for highly sensitive electrochemical detection of protein[J]. Anal. Chem., 2018,90(8):5503-5508. doi: 10.1021/acs.analchem.8b01217

    25. [25]

      Park K. Impedance technique-based label-free electrochemical aptasensor for thrombin using single-walled carbon nanotubes-casted screen-printed carbon electrode[J]. Sensors, 2022,22(7)2699. doi: 10.3390/s22072699

  • 加载中
    1. [1]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    3. [3]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    8. [8]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    13. [13]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(0)
  • Abstract views(566)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return