Peanut shell-based porous carbon supported Pd-Co catalyst for electrooxidation of methanol in alkaline media
- Corresponding author: Zhao-Hui HUO, huozhaohui@gdei.edu.cn
Citation: Zhao-Hui HUO, Xue-Rong WEI, Yong HUANG, Ze-Yu CHEN, Wei-Bing CHEN, Qi-Tong ZHANG, Gang ZHANG, Geng-Long WEN, Jun-Jie SHI. Peanut shell-based porous carbon supported Pd-Co catalyst for electrooxidation of methanol in alkaline media[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 2020-2032. doi: 10.11862/CJIC.2023.157
Ma W, Wang N, Lu Y, Lu Z Y, Tang X, Li X T. Synthesis of magnetic biomass carbon-based Bi2O3 photocatalyst and mechanism insight by a facile microwave and deposition method[J]. New J. Chem., 2019,43:2888-2898. doi: 10.1039/C8NJ04973D
Genovese M, Lian K. Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes[J]. J. Mater. Chem., 2017,5(8):3939-3947. doi: 10.1039/C6TA10382K
Peng C, Yan X B, Wang R T, Lang J W, Ou Y J, Xue Q J. Promising activated carbons derived from waste tea leaves and their application in high-performance supercapacitors electrodes[J]. Electrochim. Acta, 2013,87(1):401-408.
Li X Y, Wu G J. Porous carbon from corn flour prepared by H3PO4 carbonization combined with KOH activation for supercapacitors[J]. J. Energy Eng., 2021,9:18-25.
Tan J X, Yang J W, Liang Y R, Zheng M T, Hu H, Dong H W, Liu Y L, Xiao Y. The changing structure by component: Biomass-based porous carbon for high-performance supercapacitors[J]. J. Colloid Interface Sci., 2021,585:778-786. doi: 10.1016/j.jcis.2020.10.058
Ye Y Y, Qian T T, Jiang H. Co-loaded N-doped biochar as a high-performance oxygen reduction reaction electrocatalyst by combined pyrolysis of biomass[J]. Ind. Eng. Chem. Res., 2020,59(35):15614-15623. doi: 10.1021/acs.iecr.0c03104
Kasturi P R, Selvan R K, Lee S Y. Pt decorated Artocarpus heterophyllus seed derived carbon as an anode catalyst for DMFC application[J]. RSC Adv., 2016,6(67):62680-62694. doi: 10.1039/C6RA05833G
Li R, Zhang Y L, Chu W L, Chen Z X, Wang J L. Adsorptive removal of antibiotics from water using peanut shells from agricultural waste[J]. RSC Adv., 2018,8:13546-13555. doi: 10.1039/C7RA11796E
Ding J, Wang H L, Li Z, Cui K, Karpuzov D, Tan X H, Kohandehghan A, Mitlin D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors[J]. Energy Environ. Sci., 2015,8(3):941-955. doi: 10.1039/C4EE02986K
Dong S Y, Shen L F, Li H S, Nie P, Zhu Y Y, Sheng Q, Zhang X G. Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors[J]. J. Mater. Chem., 2015,3(42):21277-21283. doi: 10.1039/C5TA05714K
Fang J, Gao B, Zimmerman A R, Ro K S, Chen J J. Physically (CO2) activated hydrochars from hickory and peanut hull: Preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium[J]. RSC Adv., 2016,6(30):24906-24911. doi: 10.1039/C6RA01644H
FANG H Y, ZHAO J C, KANG X Y, LI Y C. Ni/biomass-derived nitrogen-doped porous carbon nanocomposites: preparation and electrocatalysis for methanol oxidation reaction[J]. Chinese J. Inorg. Chem., 2022,38(10):1959-1969. doi: 10.11862/CJIC.2022.188
Liu Y, Chi M F, Mazumder V. Composition-controlled synthesis of bimetallic PdPt nanoparticles and their electro-oxidation of methanol[J]. Chem. Mater., 2011,23(18):4199-4203. doi: 10.1021/cm2014785
Habibi B, Dadashpour E. Carbon-ceramic supported bimetallic Pt-Ni nanoparticles as an electrocatalyst for electrooxidation of methanol and ethanol in acidic media[J]. Int. J. Hydrog. Energy, 2013,38(13):5425-5434. doi: 10.1016/j.ijhydene.2012.06.045
Shen J F, Yan B, Shi M, Ma H W, Li N, Ye M X. Fast and facile preparation of reduced graphene oxide supported Pt-Co electrocatalyst for methanol oxidation[J]. Mater. Res. Bull., 2012,47(6):1486-1493. doi: 10.1016/j.materresbull.2012.02.025
Ding L X, Wang A L, Li G R, Liu Z Q, Zhao W X, Su C Y, Tong Y X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation[J]. J. Am. Chem. Soc., 2012,134(13):5730-5733. doi: 10.1021/ja212206m
Zhao Y, Fan L Z, Ren J L, Hong B. Electrodeposition of Pt-Ru and Pt-Ru-Ni nanoclusters on multi-walled carbon nanotubes for direct methanol fuel cell[J]. Int. J. Hydrog. Energy, 2014,39:4544-4557. doi: 10.1016/j.ijhydene.2013.12.202
Chu Y H, Shul Y G. Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells[J]. Int. J. Hydrog. Energy, 2010,35(20):11261-11270. doi: 10.1016/j.ijhydene.2010.07.062
Sahu S C, Samantarat A K, Dash A, Juluri R R, Sahu R K, Mishra B K, Jena B K. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst[J]. Nano Res., 2013,6(9):635-643. doi: 10.1007/s12274-013-0339-1
Kumar K S, Haridoss P, Seshadri S K. Synthesis and characterization of electrodeposited Ni-Pd alloy electrodes for methanol oxidation[J]. Surf. Coat. Technol., 2008,202(9):1764-1770. doi: 10.1016/j.surfcoat.2007.07.035
Wang Y, Sheng Z M, Yang H, Jiang S P, Li C M. Electrocatalysis of carbon black - or activated carbon nanotubes-supported Pd-Ag towards methanol oxidation in alkaline media[J]. Int. J. Hydrog. Energy, 2010,35(19):10087-10093. doi: 10.1016/j.ijhydene.2010.07.172
Qiu C C, Shang R, Xie Y F, Li C Y, Ma H Y. Electrocatalytic activity of bimetallic Pd-Ni thin films towards the oxidation of methanol and ethanol[J]. Mater. Chem. Phys., 2010,120(2/3):323-330.
YUAN Q X, CHEN W M, LÜ X R. Effect of one-dimensional/two-dimensional composite carbon support on methanol oxidation performance of pd catalysts[J]. Chinese J. Inorg. Chem., 2022,38(11):2165-2172.
Li X W, Huang Q H, Zou Z Q, Xia B J, Yang H. Low temperature preparation of carbon-supported Pd-Co alloy electrocatalysts for methanol-tolerant oxygen reduction reaction[J]. Electrochim. Acta, 2008,53(22):6662-6667. doi: 10.1016/j.electacta.2008.04.032
Tominaka S, Momma T, Osaka T. Electrodeposited Pd-Co catalyst for direct methanol fuel cell electrodes: Preparation and characterization[J]. Electrochim. Acta, 2008,53(14):4679-4686. doi: 10.1016/j.electacta.2008.01.069
Noto V D, Negro E, Lavina S, Gross S, Pace G. Pd-Co carbon-nitride electrocatalysts for polymer electrolyte fuel cells[J]. Electrochim. Acta, 2008,53(4):1604-1617.
Morales-Acosta D, Ledesma-Garcia J, Godinez L A, Rodríguez H G, Álvarez-Contreras L, Arriaga L G. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation[J]. J. Power Sources, 2010,195(2):461-465. doi: 10.1016/j.jpowsour.2009.08.014
Lei H, Zhang Q B. In situ electrochemical redox tuning of Pd-Co hybrid electrocatalysts for high-performance methanol oxidation: Strong metal-support interaction[J]. J. Colloid Interface Sci., 2021,588:476-484. doi: 10.1016/j.jcis.2020.12.091
Bernardo B, Claudio Z, Fabrizio G, Sonia C, Francesco B, Giuseppe A, Rosario M, Filippo P, Philippe M, Rosalinda I. Pd-Co-based electrodes for hydrogen production by water splitting in acidic media[J]. Materials, 2023,16(2):474-474. doi: 10.3390/ma16020474
Chen L, Zhang Y Z, Lin C H. Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries[J]. J. Mater. Chem., 2014,2(25):9684-9690. doi: 10.1039/C4TA00501E
Wang Y, Wang X, Li C M. Electrocatalysis of Pd-Co supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline medi[J]. Appl. Catal. B-Environ., 2010,99(1/2):229-234.
Celiktas M S, Alptekin F M. Conversion of model biomass to carbon-based material with high conductivity by using carbonization[J]. Energy, 2019,188116089. doi: 10.1016/j.energy.2019.116089
Shendage S S, Patil U B, Nagarkar J M. Electrochemical deposition of highly dispersed palladium nanoparticles on nafion-graphene film in presence of ferrous ions for ethanol electrooxidation[J]. Fuel Cells, 2013,13(3):364-370. doi: 10.1002/fuce.201300043
Rezaei M, Tabaian S H, Haghshenas D F. The role of electrodeposited Pd catalyst loading on the mechanisms of formic acid electrooxidation[J]. Electrocatalysis, 2014,5(2):193-203. doi: 10.1007/s12678-013-0181-y
Profeti L P R, Profeti D, Olivi P. Pt-Ru O2 electrodes prepared by thermal decomposition of polymeric precursors as catalysts for direct methanol fuel cell application[J]. Int. J. Hydrog. Energy, 2009,34(6):2747-2757. doi: 10.1016/j.ijhydene.2009.01.011
Hu Y, Mei T, Li J H, Wang J Y, Wang X B. Porous SnO2 hexagonal prism-attached Pd/rGO with enhanced electrocatalytic activity for methanol oxidation[J]. RSC Adv., 2017,7:29909-29915. doi: 10.1039/C7RA03659K
Shu C Y, Yang X D, Chen Y Z, Fang Y, Zhou Y P, Liu Y G. Nano-Fe3O4 grown on porous carbon and its effect on the oxygen reduction reaction for DMFCs with a polymer fiber membrane[J]. RSC Adv., 2016,6:37012-37017. doi: 10.1039/C6RA03173K
Liu J P, Ye J P, Xu C W, Jiang S P, Tong Y S. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti[J]. Electrochem. Commun., 2007,9(9):2334-2339. doi: 10.1016/j.elecom.2007.06.036
Xu M W, Gao G Y, Zhou W J. Novel Pd/β-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution[J]. J. Power Sources, 2008,175(1):217-220. doi: 10.1016/j.jpowsour.2007.09.069
Wang W M, Zheng D, Du C, Zou Z Q, Zhang X G, Xia B J, Yang H, Akins D L. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction[J]. J. Power Sources, 2007,167(2):243-249. doi: 10.1016/j.jpowsour.2007.02.013
Mancharan R, Goodenough J B. Methanol oxidation in acid on ordered NiTi[J]. J. Mater. Chem., 1992,2:875-887. doi: 10.1039/jm9920200875
Rostami H, Rostami A A, Omrani A. Investigation on ethanol electrooxidation via electrodeposited Pd-Co nanostructures supported on graphene oxid[J]. Int. J. Hydrog. Energy, 2015,40(33):10596-10604.
Singh R N, Sharma C S. Preparation of bimetallic Pd-Co nanoparticles on graphene support for use as methanol tolerant oxygen reduction electrocatalyst[J]. Eng. Technol. Appl. Sci. Res., 2012,2(6):295-301. doi: 10.48084/etasr.215
Hammer B, Nørskov J K. Theoretical surface science and catalysis—Calculations and concepts[J]. Adv. Catal., 2000,45:71-129.
Zhang Q, Zang B, Wang S Z. Surfactant-free synthesis of porous Au by a urea complex[J]. RSC Adv., 2019,9:23081-23085.
Rostami H, AliRostami A, Omrani A. Investigation on ethanol electrooxidation via electrodeposited Pd-Co nanostructures supported on graphene oxide[J]. Int. J. Hydrog. Energy, 2015,40(33):10596-10604.
Maiyalagan T, Scott K. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium[J]. J. Power Sources, 2010,195(16):5246-5251.
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Xiaxia Xing , Xiaoyu Chen , Zhenxu Li , Xinhua Zhao , Yingying Tian , Xiaoyan Lang , Dachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Wenhao Yan , Shuaiya Xue , Xuerui Zhao , Wei Zhang , Jian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Inset: Magnified plots of the Pd/HC0.5-700, Co/HC0.5-700, and Pd-Co/HC0-700 curves.