Citation: Song-Song YANG, Lu HAN, He-Qing CAI, Kun HU, Ru-Ping LIU, Zhi-Cheng SUN, Yan WEI. In situ synthesis of Ag NPs/MoS2 composites via microwave and their electrochemical properties[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1848-1856. doi: 10.11862/CJIC.2023.155 shu

In situ synthesis of Ag NPs/MoS2 composites via microwave and their electrochemical properties

Figures(7)

  • Molybdenum disulfide nanosheets (MoS2) are affected by charged impurities, structural defects and traps, and their easy aggregation leads to the deterioration of their electron transfer performance, which limits their application. In this study, Ag NPs/MoS2 composites were prepared by combining a few layers of MoS2 nanosheets with silver nanoparticles (Ag NPs), in order to improve the electrochemical performance of MoS2 nanosheets. Firstly, the low-layer MoS2 nanosheets were prepared by ultrasonic assisted liquid phase stripping method, and then the Ag NPs/MoS2 composites were prepared by microwave reduction method. After Ag NPs/MoS2 composites were modified onto screen printed electrodes (SPE), the peak current of cyclic voltammetry (CV) curve was 1.8 times of that of MoS2 modified SPE, and the peak current of square wave voltammetry (SWV) curve was 3.4 times of that of MoS2 modified SPE. The electron transfer impedance (Ret) of electrochemical impedance spectroscopy (EIS) was only 167 Ω, which was significantly lower than that of MoS2/SPE (320 Ω), indicating that compared to that of MoS2 nanosheets, the electrochemical performance of Ag NPs/MoS2 composites is significantly enhanced. Subsequently, the conductive mechanism of the highly conductive Ag NPs/MoS2 composites was also speculated. Finally, an electrochemical sensor was constructed based on Ag NPs/MoS2 composites and used for the detection of prostate specific antigen (PSA). The results showed that the detection limit of the sensor for PSA was 0.009 ng·mL-1, the linear detection range was 0.1~1 000 ng·mL-1, and the sensitivity was 0.011 μA·mL·ng-1.
  • 加载中
    1. [1]

      Yang R J, Fan Y Y, Zhang Y F, Mei L, Zhu R S, Qin J Q, Hu J G, Chen Z X, Ng Y H, Voiry D, Li S, Lu Q Y, Wang Q, Yu J C, Zeng Z Y. 2D transition metal dichalcogenides for photocatalysis[J]. Angew. Chem. Int. Ed., 2023,62(13)e202218016. doi: 10.1002/anie.202218016

    2. [2]

      Luo P F, Liu C, Lin J, Duan X P, Zhang W J, Ma C, Lv Y W, Zou X M, Liu Y A, Schwierz F, Qin W J, Liao L, He J, Liu X Q. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation[J]. Nat. Electron., 2022,5(12):849-858. doi: 10.1038/s41928-022-00877-w

    3. [3]

      Sri S, Chauhan D, Lakshmi G B V S, Thakar A, Solanki P R. MoS2 nanoflower based electrochemical biosensor for TNF alpha detection in cancer patients[J]. Electrochim. Acta, 2022,405139736. doi: 10.1016/j.electacta.2021.139736

    4. [4]

      Rashidi S, Caringula A, Nguyen A, Obi I, Obi C, Wei W. Recent progress in MoS2 for solar energy conversion applications[J]. Front. Energy, 2019,13(2):251-268. doi: 10.1007/s11708-019-0625-z

    5. [5]

      Rahman A, Jennings J R, Tan A L, Khan M M. Molybdenum disulfide-based nanomaterials for visible-light-induced photocatalysis[J]. ACS Omega, 2022,7(26):22089-22110. doi: 10.1021/acsomega.2c01314

    6. [6]

      Wang X Y, Chen X Y, Ma J Y, Gou S F, Guo X J, Tong L, Zhu J Q, Xia Y, Wang D, Sheng C M, Chen H L, Sun Z Z, Ma S L, Riaud A, Xu Z H, Cong C X, Qiu Z J, Zhou P, Xie Y F, Bian L F, Bao W Z. Pass-transistor logic circuits based on wafer-scale 2D semiconductors[J]. Adv Mater., 2022,34(48)2202472. doi: 10.1002/adma.202202472

    7. [7]

      Kim J, Jung M, Lim D U, Rhee D, Jung S H, Cho H K, Kim H K, Cho J H, Kang J. Area-selective chemical doping on solution-processed MoS2 thin-film for multi-valued logic gates[J]. Nano Lett., 2022,22(2):570-577. doi: 10.1021/acs.nanolett.1c02947

    8. [8]

      Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Lett., 2013,13(6):2615-2622. doi: 10.1021/nl4007479

    9. [9]

      Yu Z H, Pan Y M, Shen Y T, Wang Z L, Ong Z Y, Xu T, Xin R, Pan L J, Wang B G, Sun L T, Wang J L, Zhang G, Zhang Y W, Shi Y, Wang X R. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering[J]. Nat. Commun., 2014,5(1)5290. doi: 10.1038/ncomms6290

    10. [10]

      Mphuthi N, Sikhwivhilu L, Ray S S. Functionalization of 2D MoS2 nanosheets with various metal and metal oxide nanostructures: their properties and application in electrochemical sensors[J]. Biosensors Basel, 2022,12386. doi: 10.3390/bios12060386

    11. [11]

      Yoon J, Lim J, Shin M, Lee S N, Choi J W. Graphene/MoS2 nanohybrid for biosensors[J]. Materials, 2021,14(3)518. doi: 10.3390/ma14030518

    12. [12]

      Raju V, Kumar Y V N, Jetti V R, Basak P. MoS2/polythiophene composite cathode as a potential host for rechargeable aluminum batteries: Deciphering the impact of processing on the performance[J]. ACS Appl. Energy Mater., 2021,4(9):9227-9239. doi: 10.1021/acsaem.1c01480

    13. [13]

      Li Y, Gu Q F, Johannessen B, Zheng Z, Li C, Luo Y T, Zhang Z Y, Zhang Q, Fan H I, Luo W B, Liu B L, Dou S X, Liu H K. Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution[J]. Nano Energy, 2021,84105898. doi: 10.1016/j.nanoen.2021.105898

    14. [14]

      Kamruzzaman M, Zapien J A, Afrose R, Anam T K, Rahman M, Liton M N H, Helal M A, Khan M K R, Emmanuel A A. A comparative study of Ag doping effects on the electronic, optical, carrier conversion, photocatalytic and electrical properties of MoS2[J]. Mater. Sci. Eng. B Adv. Funct. Solid State Mater., 2021,273115442. doi: 10.1016/j.mseb.2021.115442

    15. [15]

      Rong J, Zhu G L, Osterloh W R, Fang Y Y, Ou Z P, Qiu F X, Kadish K M. In situ construction MoS2-Pt nanosheets on 3D MOF-derived S, N-doped carbon substrate for highly efficient alkaline hydrogen evolution reaction[J]. Chem. Eng. J., 2021,412127556. doi: 10.1016/j.cej.2020.127556

    16. [16]

      Krishnan U, Kaur M, Singh K, Kaur G, Singh P, Kumar M, Kumar A. MoS2/Ag nanocomposites for electrochemical sensing and photocatalytic degradation of textile pollutant[J]. J. Mater. Sci. Mater. Electron., 2019,30(4):3711-3721. doi: 10.1007/s10854-018-00653-7

    17. [17]

      Van T D, Thuy N D T, Phuong T D V, Thi N N, Thi T N, Phuong T N, Van T V, Vuong-Pham H, Dinh T P. High-performance nonenzymatic electrochemical glucose biosensor based on AgNP-decorated MoS2 microflowers[J]. Curr. Appl. Phys., 2022,43:116-123. doi: 10.1016/j.cap.2022.09.001

    18. [18]

      Ansari J R, Singh N, Anwar S, Mohapatra S, Datta A. Silver nanoparticles decorated two dimensional MoS2 nanosheets for enhanced photocatalytic activity[J]. Colloid Surf. A Physicochem. Eng. Asp., 2022,635128102. doi: 10.1016/j.colsurfa.2021.128102

    19. [19]

      Pan L, Liu Y T, Xie X M, Zhu X D. Coordination-driven hierarchical assembly of silver nanoparticles on MoS2 nanosheets for improved lithium storage[J]. Chem. Asian. J., 2014,9(6):1519-1524. doi: 10.1002/asia.201301690

    20. [20]

      Nguyen T P, Kim I T. Ag Nanoparticle-decorated MoS2 nanosheets for enhancing electrochemical performance in lithium storage[J]. Nanomaterials, 2021,11(3)626. doi: 10.3390/nano11030626

    21. [21]

      Sharma S, Thakur M, Deb M K. Preparation of silver nanoparticles by microwave irradiation[J]. Curr. Nanosci., 2008,4:138-140. doi: 10.2174/157341308784340930

    22. [22]

      Du C X, Han L, Dong S L, Li L H, Wei Y. A novel procedure for fabricating flexible screen-printed electrodes with improved electrochemical performance[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2016,137012060. doi: 10.1088/1757-899X/137/1/012060

    23. [23]

      Wang P J, Tsai P C, Yang Z S, Lin S Y, Sun C K. Revealing the interlayer van der Waals coupling of bi-layer and tri-layer MoS2 using terahertz coherent phonon spectroscopy[J]. Photoacoustics, 2022,28100412. doi: 10.1016/j.pacs.2022.100412

    24. [24]

      Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S. Anomalous lattice vibrations of single- and few-layer MoS2[J]. ACS nano, 2010,4(5):2695-2700. doi: 10.1021/nn1003937

    25. [25]

      Fu Y J, Wang C R, Wang L L, Peng X, Wu B H, Sun X Q, Chen X S. Synthesis and electrochemical property of few-layer molybdenum disulfide nanosheets[J]. Jpn. J. Appl. Phys., 2016,55(12)125201. doi: 10.7567/JJAP.55.125201

    26. [26]

      Liu J. Synthesis and Electrochemical Properties of A NPs/rGO and AgNPs/MoS2 Composites. Taiyuan: Taiyuan University of Technology, 2017: 33-44

    27. [27]

      Han L, Liu C M, Dong S L, Du C X, Zhang X Y, Li L H, Wei Y. Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen[J]. Biosens. Bioelectron., 2017,87:466-472. doi: 10.1016/j.bios.2016.08.004

    28. [28]

      Gui J C, Han L, Du C X, Yu X N, Hu K, Li L H. An efficient label-free immunosensor based on ce-MoS2/AgNR composites and screen-printed electrodes for PSA detection[J]. J. Solid State Electrochem., 2021,25:973-982. doi: 10.1007/s10008-020-04872-z

  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    6. [6]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

Metrics
  • PDF Downloads(6)
  • Abstract views(517)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return