Citation: Peng XU, Wei DAI, Wei-Shan SHI, Gang XING, Zhao-Gui WANG, Sha-Sha WANG, Qun LI, Chao-Qun YOU, De-Jun HAO. Preparation of zeolitic imidazolate frameworks-8/modified polyacrylonitrile electrospun nanofibers for efficient removal of malachite green from water[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1959-1968. doi: 10.11862/CJIC.2023.154 shu

Preparation of zeolitic imidazolate frameworks-8/modified polyacrylonitrile electrospun nanofibers for efficient removal of malachite green from water

  • Corresponding author: De-Jun HAO, djhao@njfu.edu.cn
  • Received Date: 30 March 2023
    Revised Date: 28 June 2023

Figures(9)

  • A simple in-situ growth method was presented to synthesize zeolitic imidazolate framework-8 (ZIF-8), one of the most common metal-organic frameworks (MOFs) crystals, onto a carboxymethylated polyacrylonitrile electrospun nanofibers (PAN-COOH NFs). The synthesized ZIF-8/PAN-COOH NFs were characterized by field-emission scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. The characterization results confirmed that the ZIF-8 particles were successfully loaded on the surface of the PAN-COOH NFs. The ability of ZIF-8/PAN-COOH NFs to remove malachite green (MG), a model organic dye, from wastewater was evaluated to examine the potential of this novel material as an adsorbent. The adsorption to MG was consistent with the pseudo -second -order kinetic equation, and the adsorption process was expressed by the Langmuir isotherm model. The maximum adsorption capacity for MG was examined as 3 604 mg·g-1. It is noteworthy that the ZIF-8/PAN-COOH NFs could be easily separated from the dye solution and regenerated through a simple washing process for recycling.
  • 加载中
    1. [1]

      Mishra S, Cheng L, Maiti A. The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: A comprehensive review[J]. J. Environ. Chem. Eng., 2021,9(1)104901. doi: 10.1016/j.jece.2020.104901

    2. [2]

      Uddin F. Environmental hazard in textile dyeing wastewater from local textile industry[J]. Cellulose, 2021,28(17):10715-10739. doi: 10.1007/s10570-021-04228-4

    3. [3]

      Donkadokula N Y, Kola A K, Naz I, Saroj D. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques[J]. Rev. Environ. Sci. Bio/Technol., 2020,19(3):543-560. doi: 10.1007/s11157-020-09543-z

    4. [4]

      HUANG J, CHEN H J, FENG X M. Micromotors based on Ni-Mn binary oxide and its application for effective dye adsorption[J]. Chinese J. Inorg. Chem., 2022,38:1411-1420.  

    5. [5]

      Osugi M E, Umbuzeiro G A, Anderson M A, Zanoni M V B. Degradation of metallophtalocyanine dye by combined processes of electro-chemistry and photoelectrochemistry[J]. Electrochim. Acta, 2005,50(25/26):5261-5269.

    6. [6]

      Jin Z K, Dong W J, Yang M, Wang J J, Gao H Y, Wang G. One-pot preparation of hierarchical nanosheet-constructed Fe3O4/MIL-88B(Fe) magnetic microspheres with high efficiency photocatalytic degradation of dye[J]. ChemCatChem, 2016,8(22):3510-3517. doi: 10.1002/cctc.201600952

    7. [7]

      Oelgemöller M, Healy N, de Oliveira L, Jung C, Mattay J. Green photochemistry: Solar-chemical synthesis of Juglone with medium concentrated sunlight[J]. Green Chem., 2006,8(9):831-834. doi: 10.1039/B605906F

    8. [8]

      Wang Z Y, Ju C J, Zhang R, Hua J Q, Chen R P, Liu G X, Yin K, Yu L. Acceleration of the bio-reduction of methyl orange by a magnetic and extracellular polymeric substance nanocomposite[J]. J. Hazard. Mater., 2021,420126576. doi: 10.1016/j.jhazmat.2021.126576

    9. [9]

      Fan J X, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. Adsorption and biodegradation of dye in wastewater with Fe3O4@MIL-100(Fe) core-shell bio-nanocomposites[J]. Chemosphere, 2018,191:315-323. doi: 10.1016/j.chemosphere.2017.10.042

    10. [10]

      Wang X H, Jiang C L, Hou B X, Wang Y Y, Hao C, Wu J B. Carbon composite lignin-based adsorbents for the adsorption of dyes[J]. Chemosphere, 2018,206:587-596. doi: 10.1016/j.chemosphere.2018.04.183

    11. [11]

      Gohr M S, Abd- Elhamid A I, El- Shanshory A A, Soliman H A. Adsorption of cationic dyes onto chemically modified activated carbon: Kinetics and thermodynamic study[J]. J. Mol. Liq., 2022,346118227. doi: 10.1016/j.molliq.2021.118227

    12. [12]

      Atrous M, Sellaoui L, Bouzid M, Lima E C, Thue P S, Bonilla-Petriciolet A, Ben Lamine A. Adsorption of dyes acid red 1 and acid green 25 on grafted clay: Modeling and statistical physics interpretation[J]. J. Mol. Liq., 2019,294111610. doi: 10.1016/j.molliq.2019.111610

    13. [13]

      Tang C Y, Yu P, Tang L S, Wang Q Y, Bao R Y, Liu Z Y, Yang M B, Yang W. Tannic acid functionalized graphene hydrogel for organic dye adsorption[J]. Ecotoxicol. Environ. Saf., 2018,165:299-306. doi: 10.1016/j.ecoenv.2018.09.009

    14. [14]

      Ma X L, Wang W L, Sun C G, Li H, Sun J, Liu X. Adsorption performance and kinetic study of hierarchical porous Fe-based MOFs for toluene removal[J]. Sci. Total Environ., 2021,793148622. doi: 10.1016/j.scitotenv.2021.148622

    15. [15]

      Andres M A, Fontaine P, Goldmann M, Serre C, Roubeau O, Gascon I. Solvent-exchange process in MOF ultrathin films and its effect on CO2 and methanol adsorption[J]. J. Colloid Interface Sci., 2021,590:72-81. doi: 10.1016/j.jcis.2021.01.030

    16. [16]

      Banerjee D, Elsaidi S K, Thallapally P K. Xe adsorption and separation properties of a series of microporous metal-organic frameworks (MOFs) with V-shaped linkers[J]. J. Mater. Chem. A, 2017,5(32):16611-16615. doi: 10.1039/C7TA02746J

    17. [17]

      Gao Y X, Liu K, Kang R X, Xia J, Yu G, Deng S B. A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: Kinetics, isotherms and mechanisms[J]. J. Hazard. Mater., 2018,359:248-257. doi: 10.1016/j.jhazmat.2018.07.054

    18. [18]

      Xie L H, Liu X M, He T, Li R. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds[J]. Chem, 2018,4(8):1911-1927. doi: 10.1016/j.chempr.2018.05.017

    19. [19]

      Ahmadipouya S, Heidarian H M, Ahmadijokani F, Jarahiyan A, Molavi H, Matloubi M F, Rezakazemi M, Arjmand M. Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution[J]. J. Mol. Liq., 2021,322114910. doi: 10.1016/j.molliq.2020.114910

    20. [20]

      Khosravi M J, Hosseini S M, Vatanpour V. Performance improvement of PES membrane decorated by Mil-125(Ti)/chitosan nanocomposite for removal of organic pollutants and heavy metal[J]. Chemosphere, 2022,290133335. doi: 10.1016/j.chemosphere.2021.133335

    21. [21]

      Mohammad N S, Seyedpour S F, Aghapour A S, Dadashi F M, Elliott M, Tiraferri A, Sadrzadeh M, Rahimpour A. Loose nanofiltration membranes functionalized with in situ-synthesized metal organic framework for water treatment[J]. Mater. Today Chem., 2022,24100909. doi: 10.1016/j.mtchem.2022.100909

    22. [22]

      Khajavian M, Salehi E, Vatanpour V. Chitosan/polyvinyl alcohol thin membrane adsorbents modified with zeolitic imidazolate framework (ZIF-8) nanostructures: Batch adsorption and optimization[J]. Sep. Purif. Technol., 2020,241116759. doi: 10.1016/j.seppur.2020.116759

    23. [23]

      HUANG J, TIAN X Y, YANG L, FENG X M. Mn-MOF derived Mn2O3 micromotors applied to removal of methyl blue in water[J]. Chinese J. Inorg. Chem., 2022,38:153-160. doi: 10.11862/CJIC.2022.008

    24. [24]

      Park J, Oh M. Construction of flexible metalorganic framework (MOF) papers through MOF growth on filter paper and their selective dye capture[J]. Nanoscale, 2017,9(35):12850-12854. doi: 10.1039/C7NR04113F

    25. [25]

      Xu Y, Zhai X, Wang X H, Li L L, Chen H, Fan F Q, Bai X J, Chen J Y, Fu Y. Fabrication of a robust MOF/aerogel composite via a covalent postassembly method[J]. Chem. Commun., 2021,57(48):5961-5964. doi: 10.1039/D1CC01613J

    26. [26]

      Maan O, Song P, Chen N X, Lu Q Y. An in situ procedure for the preparation of zeolitic imidazolate framework-8 polyacrylamide hydrogel for adsorption of aqueous pollutants[J]. Adv. Mater. Interfaces, 2019,6(10)1801895. doi: 10.1002/admi.201801895

    27. [27]

      Dong C, Yang J J, Xie L H, Cui G, Fang W H, Li J R. Catalytic ozone decomposition and adsorptive VOCs removal in bimetallic metal-organic frameworks[J]. Nat. Commun., 2022,13(1)4991. doi: 10.1038/s41467-022-32678-2

    28. [28]

      Mahmoodi N M, Oveisi M, Taghizadeh A, Taghizadeh M. Synthesis of pearl necklace-like ZIF-8@chitosan/PVA nanofiber with synergistic effect for recycling aqueous dye removal[J]. Carbohydr. Polym., 2020,227115364. doi: 10.1016/j.carbpol.2019.115364

    29. [29]

      Huang J M, Huang D, Zeng F B, Ma L, Wang Z B. Photocatalytic MOF fibrous membranes for cyclic adsorption and degradation of dyes[J]. J. Mater. Sci., 2020,56(4):3127-3139.

    30. [30]

      Xie X Y, Qian X Y, Qi S C, Wu J K, Liu X Q, Sun L B. Endowing Cu-BTC with improved hydrothermal stability and catalytic activity: Hybridization with natural clay attapulgite via vapor-induced crystal-lization[J]. ACS Sustain. Chem. Eng., 2018,6(10):13217-13225. doi: 10.1021/acssuschemeng.8b02827

    31. [31]

      ZHU Y B, TANG X T, DUAN L W, LIU W Y, CAO X X, FENG P Z. Mn4+ doped Co3O4 nanofibers: Preparation by electro-spinning and electrochemical performance[J]. Chinese J. Inorg. Chem., 2018,34:317-324.  

    32. [32]

      Dou Y, Zhang W, Kaiser A. Electrospinning of metal-organic frameworks for energy and environmental applications[J]. Adv. Sci., 2020,7(3)1902590. doi: 10.1002/advs.201902590

    33. [33]

      Jia M, Zhang X F, Feng Y, Zhou Y, Yao J. In-situ growing ZIF-8 on cellulose nanofibers to form gas separation membrane for CO2 separation[J]. J. Membr. Sci., 2020,595117579. doi: 10.1016/j.memsci.2019.117579

    34. [34]

      Lu J, Wu J K, Jiang Y, Tan P, Zhang L, Lei Y, Liu X Q, Sun L B. Fabrication of microporous metal-organic frameworks in uninterrupted mesoporous tunnels: Hierarchical structure for efficient trypsin immobilization and stabilization[J]. Angew. Chem. Int. Ed., 2020,59(16):6428-6434. doi: 10.1002/anie.201915332

    35. [35]

      Abdi J, Vossoughi M, Mahmoodi N M, Alemzadeh I. Synthesis of metalorganic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal[J]. Chem. Eng. J., 2017,326:1145-1158. doi: 10.1016/j.cej.2017.06.054

    36. [36]

      Wang S M, Li Z H, Lu C. Polyethyleneimine as a novel desorbent for anionic organic dyes on layered double hydroxide surface[J]. J. Colloid Interface Sci., 2015,458:315-322. doi: 10.1016/j.jcis.2015.07.056

    37. [37]

      Zhao R, Yong X Y, Pan M, Deng J P, Pan K. Aldehyde-containing nanofibers electrospun from biomass vanillin-derived polymer and their application as adsorbent[J]. Sep. Purif. Technol., 2020,246116916. doi: 10.1016/j.seppur.2020.116916

    38. [38]

      Habiba U, Siddique T A, Li Lee J J, Joo T C, Ang B C, Afifi A M. Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane[J]. Carbohydr. Polym., 2018,191:79-85. doi: 10.1016/j.carbpol.2018.02.081

    39. [39]

      Gao Y, Deng S Q, Jin X, Cai S L, Zheng S R, Zhang W G. The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water[J]. Chem. Eng. J., 2019,357:129-139. doi: 10.1016/j.cej.2018.09.124

    40. [40]

      Wang J L, Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method[J]. Chemosphere, 2020,258127279. doi: 10.1016/j.chemosphere.2020.127279

    41. [41]

      Li Y F, Yan X L, Hu X Y, Feng R, Zhou M, Han D Z. In situ growth of ZIF-8 onto porous carbons as an efficient adsorbent for malachite green removal[J]. J. Porous Mater., 2020,27(4):1109-1117. doi: 10.1007/s10934-020-00887-z

    42. [42]

      Wang Q Q, Lei L L, Wang F C, Chen C T, Kang X Y, Wang C, Zhao J H, Yang Q X, Chen Z J. Preparation of egg white@zeolitic imidazolate framework-8@polyacrylic acid aerogel and its adsorption properties for organic dyes[J]. J. Solid State Chem., 2020,292121656. doi: 10.1016/j.jssc.2020.121656

    43. [43]

      Mahmoodi N M, Oveisi M, Bakhtiari M, Hayati B, Shekarchi A A, Bagheri A, Rahimi S. Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework—Graphene oxide nanocomposites and pollutant removal from water[J]. J. Mol. Liq., 2019,282:115-130. doi: 10.1016/j.molliq.2019.02.139

    44. [44]

      Rabeie B, Mahkam M, Mahmoodi N M, Lan C Q. Graphene quantum dot incorporation in the zeolitic imidazolate framework with sodalite (SOD) topology: Synthesis and improving the adsorption ability in liquid phase[J]. J. Environ. Chem. Eng., 2021,9(6)106303. doi: 10.1016/j.jece.2021.106303

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    5. [5]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    10. [10]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    11. [11]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    12. [12]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    13. [13]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    14. [14]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    15. [15]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    16. [16]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    17. [17]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    18. [18]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    19. [19]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    20. [20]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

Metrics
  • PDF Downloads(6)
  • Abstract views(405)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return