Citation: Ying-Jie LI, Xin WANG, Yu-Cheng ZHOU. Ru loaded on NiFe layered double hydroxide nanosheet arrays for boosting alkaline electrocatalytic hydrogen evolution and oxygen evolution abilities[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1905-1913. doi: 10.11862/CJIC.2023.150 shu

Ru loaded on NiFe layered double hydroxide nanosheet arrays for boosting alkaline electrocatalytic hydrogen evolution and oxygen evolution abilities

  • Corresponding author: Ying-Jie LI, liyj@ujs.edu.cn
  • Received Date: 28 March 2023
    Revised Date: 23 August 2023

Figures(7)

  • Ru/NiFe LDH was obtained by introducing Ru into the surface of NiFe layered double hydroxide (LDH) nanosheet arrays by using the ion-exchange method. The introduction of Ru species promotes electrocatalytic performances of NiFe LDH toward water splitting with the assistance of the increased active surface areas with much more active sites, as well as optimal electronic structure. Ru anchored NiFe LDH (Ru/NiFe LDH) showed superior activity toward hydrogen evolution reaction with an overpotential of 50 mV to reach 10 mA·cm-2 with Tafel slop of 52.3 mV·dec-1, compared with that of NiFe LDH with 226 mV at 10 mA·cm-2 and Tafel slope of 157.5 mV·dec-1. In addition, Ru/NiFe LDH catalyst also exhibited excellent performance toward oxygen evolution reaction, requiring an overpotential of 231 mV to achieve 50 mA·cm-2, outperforming that of NiFe LDH (237 mV). As expected, Ru/NiFe LDH catalyst showed robust tolerance to long-term working catalysis.
  • 加载中
    1. [1]

      Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012,488(7411):294-303. doi: 10.1038/nature11475

    2. [2]

      Turner J A. Sustainable hydrogen production[J]. Science, 2004,305(5686):972-974. doi: 10.1126/science.1103197

    3. [3]

      Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017,355(6321)eaad4998. doi: 10.1126/science.aad4998

    4. [4]

      Tollefson J. Hydrogen vehicles: Fuel of the future?[J]. Nature, 2010,464(7293):1262-1264. doi: 10.1038/4641262a

    5. [5]

      Boretti A, Banik B K. Advances in hydrogen production from natural gas reforming[J]. Adv. Energy Sustainability Res., 2021,2(11)2100097. doi: 10.1002/aesr.202100097

    6. [6]

      Midilli A, Kucuk H, Topal M E, Topal M E, Akbulut U, Dincer I. A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities[J]. Int. J. Hydrog. Energy, 2021,46(50):25385-25412. doi: 10.1016/j.ijhydene.2021.05.088

    7. [7]

      Bie C B, Wang L X, Yu J G. Challenges for photocatalytic overall water splitting[J]. Chem, 2022,8(6):1567-1574. doi: 10.1016/j.chempr.2022.04.013

    8. [8]

      Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nat. Rev. Chem., 2017,1(1)0003. doi: 10.1038/s41570-016-0003

    9. [9]

      Yu J, He Q J, Yang G M, Zhou W, Shao Z P, Ni M. Recent advances and perspective in ruthenium-based materials for electrochemical water splitting[J]. ACS Catal., 2019,9(11):9973-10011. doi: 10.1021/acscatal.9b02457

    10. [10]

      Li L G, Wang P T, Shao Q, Huang X Q. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chem. Soc. Rev., 2020,49(10):3072-3106. doi: 10.1039/D0CS00013B

    11. [11]

      Wang Y Y, Yan D F, Hankari E S, Zou Y Q, Wang S Y. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting[J]. Adv. Sci., 2018,5(8)1800064. doi: 10.1002/advs.201800064

    12. [12]

      Cheng J L, Wang D S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting[J]. Chin. J. Catal., 2022,43(6):1380-1398. doi: 10.1016/S1872-2067(21)63987-6

    13. [13]

      Bodhankar P M, Sarawade P B, Singh G, Vinu A, Dhawale D S. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting[J]. J. Mater. Chem. A, 2021,9(6):3180-3208. doi: 10.1039/D0TA10712C

    14. [14]

      Zhao J, Zhang J J, Li Z Y, Bu X H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction[J]. Small, 2020,16(51)2003916. doi: 10.1002/smll.202003916

    15. [15]

      Zhang B W, Zhu C Q, Wu Z S, Stavitski E, Lui Y H, Kim T, Liu H, Huang L L, Luan X C, Lin Z, Jiang K, Huang W Y, Hu S, Wang H L, Francisco J S. Integrating Rh species with NiFe-layered double hydroxide for overall water splitting[J]. Nano Lett., 2019,20(1):136-144.

    16. [16]

      Liu M J, Min K A, Han B C, Lee L Y S. Interfacing or doping? Role of Ce in highly promoted water oxidation of NiFe-layered double hydroxide[J]. Adv. Energy Mater., 2021,11(33)2101281. doi: 10.1002/aenm.202101281

    17. [17]

      Li P S, Duan X X, Kuang Y, Li Y P, Zhang G X, Liu W, Sun X M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation[J]. Adv. Energy Mater., 2018,8(15)1703341. doi: 10.1002/aenm.201703341

    18. [18]

      ZENG C W, LI X X, ZENG J M, LIU C, LAI J J, QI X P. Synergistic enhancement of catalytic water electrolysis performance of iron-cobalt-based materials by oxygen vacancies and phosphorus doping[J]. Chinese J. Inorg. Chem., 2023,39(2):202-210.  

    19. [19]

      Wang Y Y, Qiao M, Li Y F, Wang S Y. Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction[J]. Small, 2018,14(17)1800136. doi: 10.1002/smll.201800136

    20. [20]

      Huang G, Li Y Y, Chen R, Xiao Z H, Du S Q, Huang Y C, Xie C, Dong C L, Yi H B, Wang S Y. Electrochemically formed PtFeNi alloy nanoparticles on defective NiFe LDHs with charge transfer for efficient water splitting[J]. Chin. J. Catal., 2022,43(4):1101-1110. doi: 10.1016/S1872-2067(21)63926-8

    21. [21]

      WEI X D, LIU N, QIAO S Y. Preparation and oxygen evolution reaction electrocatalytic performance of NiMoO4 nanowires@ZnCo MOF(350) core-shell structure composites[J]. Chinese J. Inorg. Chem., 2022,38(11):2308-2320.  

    22. [22]

      LI X Y, WANG Z Z, ZHANG J, ZHAO W J. In-situ bimetallic AlCo-layered double hydroxide nano-catalyst supported on foamed nickel for efficient electrocatalysis of oxygen evolution reaction[J]. Chinese J. Inorg. Chem., 2022,38(10):1999-2005.  

    23. [23]

      McCrory C C L, Jung S, Ferrer I M, Chatman S M, Peters J C, Jaramillo T F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. J. Am. Chem. Soc., 2015,137(13):4347-4357. doi: 10.1021/ja510442p

    24. [24]

      Xu H T, Zhou X Y, Lin X R, Wu Y H, Qiu H J. Electronic interaction between in situ formed RuO2 clusters and a nanoporous Zn3V3O8 support and its use in the oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2021,13(46):54951-54958. doi: 10.1021/acsami.1c15119

    25. [25]

      Li W, Feng B M, Yi L Y, Li J Y, Hu W H. Highly efficient alkaline water splitting with Ru‐doped Co-V layered double hydroxide nanosheets as a bifunctional electrocatalyst[J]. ChemSusChem, 2021,14(2):730-737. doi: 10.1002/cssc.202002509

    26. [26]

      Hu L Y, Zeng X, Wei X Q, Wang H J, Wu Y, Gu W L, Shi L, Zhu C Z. Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures[J]. Appl. Catal. B-Environ., 2020,273(15)119014.

    27. [27]

      Li X P, Zheng L R, Liu S J, Ouyang T, Ye S, Liu Z Q. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting[J]. Chin.Chem. Lett., 2022,33(11):4761-4765. doi: 10.1016/j.cclet.2021.12.095

    28. [28]

      Zhai P L, Xia M Y, Wu Y Z, Zhang G H, Gao J F, Zhang B, Cao S Y, Zhang Y T, Li Z W, Fan Z Z, Wang C, Zhang X M, Miller T J, Sun L C, Hou J G. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting[J]. Nat. Commun., 2021,12(1)4587. doi: 10.1038/s41467-021-24828-9

    29. [29]

      Zhao J, Wang J J, Zheng X R, Wang H Z, Zhang J F, Ding J, Han X P, Deng Y D, Hu W B. Activating Ru-O-Co interaction on the α-Co(OH)2@Ru interface for accelerating the volmer step of alkaline hydrogen evolution[J]. Small Methods, 2023,2(7)2201362.

    30. [30]

      Zhang Y, Hu T, Ke C W, Han F Y, Xiao W P, Yang X F. Ru nanoclusters confined on α/β cobalt hydroxide nanosheets as efficient bifunctional oxygen electrocatalysts for Zn-air batteries[J]. Inorg. Chem. Front., 2022,9(22):5774-5782. doi: 10.1039/D2QI01585D

    31. [31]

      Wang Y L, Liu R Z, Xiao W P, Wang X P, Li B, Li Z J, Wu Z X, Wang L. Two-dimensional asymmetric structured Ru-Co based compounds as multifunctional electrocatalysts toward hydrogen/oxygen related applications[J]. Fuel, 2023,334126635. doi: 10.1016/j.fuel.2022.126635

    32. [32]

      Wang D, Yang L, Liu H B, Cao D P. Polyaniline-coated Ru/Ni(OH)2 nanosheets for hydrogen evolution reaction over a wide pH range[J]. J. Catal., 2019,375:249-256. doi: 10.1016/j.jcat.2019.06.008

    33. [33]

      Li D, Zhang B W, Li Y, Chen R S, Hu S, Ni H W. Boosting hydrogen evolution activity in alkaline media with dispersed ruthenium clusters in NiCo-layered double hydroxide[J]. Electrochem. Commun., 2019,101:23-27. doi: 10.1016/j.elecom.2019.01.014

    34. [34]

      Chen G B, Wang T, Zhang J, Liu P, Sun H J, Zhuang X D, Chen M W, Feng X L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites[J]. Adv. Mater., 2018,30(10)1706279. doi: 10.1002/adma.201706279

    35. [35]

      Xi G G, Zuo L, Li X, Jin Y, Li R, Zhang T. In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution[J]. J. Mater. Sci. Technol., 2021,70:197-204. doi: 10.1016/j.jmst.2020.08.039

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    9. [9]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    12. [12]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    15. [15]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    19. [19]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    20. [20]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

Metrics
  • PDF Downloads(5)
  • Abstract views(856)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return