Citation: Su ZHANG, Qiu-Hong YANG, Qi-Di LI. Dielectric properties of low-temperature sintered NaBi(WO4)2 ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1923-1930. doi: 10.11862/CJIC.2023.149 shu

Dielectric properties of low-temperature sintered NaBi(WO4)2 ceramics

  • Corresponding author: Qiu-Hong YANG, yangqiuhong@shu.edu.cn
  • Received Date: 3 March 2023
    Revised Date: 22 August 2023

Figures(12)

  • A novel NaBi(WO4)2 (NBW) ceramic prepared by solid-phase synthesis, the phase structure, morphology, sintering properties, and microwave dielectric properties of NBW ceramic were investigated. NBW is a chemical properties stable compound and was used without special packaging. The NBW ceramic can be sintered densification at temperatures from 625 to 800 ℃ for 1-4 h. The X-ray diffraction showed that the NBW ceramic sintered at temperatures from 625 to 800 ℃ for 2 h is a tetragonal crystal scheelite structure single-phase ceramic. With the increase of sintered temperature, the permittivity and quality factor (Qf value) first increased then decreased, while the temperature coefficient of resonant frequency gradually decreased. The dielectric properties of NBW ceramic sintered at 650 ℃ for 2 h were permittivity of 14.36, Qf of 16 503 GHz, and temperature coefficient of resonant frequency of -1.055 ×10-5-1. When NBW was co-fired with Ag, it reacted with Ag to form Ag2W2O7, but NBW had chemical compatibility with Au and Al.
  • 加载中
    1. [1]

      Sebastian M T, Jantunen H. Low loss dielectric materials for LTCC applications: A review[J]. Int. Mater. Rev., 2013,53(2):57-90.

    2. [2]

      Yu H T, Liu J S, Zhang W L, Zhang S R. Ultra-low sintering temperature ceramics for LTCC applications: A review[J]. J. Mater. Sci-Mater. Electron., 2015,26(12):9414-9423. doi: 10.1007/s10854-015-3282-y

    3. [3]

      Sebastian M T, Wang H, Jantunen H. Low temperature co-fired ceramics with ultra-low sintering temperature: A review[J]. Curr. Opin. Solid State Mater. Sci., 2016,20(3):151-170. doi: 10.1016/j.cossms.2016.02.004

    4. [4]

      Imanaka Y. Multilayered low temperature cofired ceramics (LTCC) technology. New York: Springer Science & Business Media, 2005:1-98

    5. [5]

      Yu H T, Ju K, Wang K M. A novel glass-ceramic with ultra-low sintering temperature for LTCC Application[J]. J. Am. Ceram. Soc., 2014,97(3):704-707. doi: 10.1111/jace.12854

    6. [6]

      Xi J, Cheng G H, Liu F, Shang F, Xu J, Zhou C R, Yuan C G, Yuan C L. Synthesis, microstructure and characterization of ultra-low permittivity CuO-ZnO-B2O3-Li2O glass/Al2O3 composites for ULTCC application[J]. Ceram. Int., 2017,18(45):24431-24436.

    7. [7]

      Pullar R C, Farrah S, Alford N M. MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics[J]. J. Eur. Ceram. Soc., 2007,27(2/3):1059-1063.

    8. [8]

      Wang X Y, Lv J Q, Xu Y, Zhang L C, Shen Y, Zhou H F, Di Z, Song K X, Guo H, Shi F. Dielectric responses and structure-property relationships of Ca1-xBaxWO4 composite microwave dielectric ceramics[J]. J. Alloy. Compd., 2022,925166669. doi: 10.1016/j.jallcom.2022.166669

    9. [9]

      Zhang Q, Xu L L, Tang X L, Zhang H W, Zhou Y T, Jing Y L, Li Y N, Su H. Structural characteristics and microwave dielectric properties of Zn1-xBixVxW1-xO4-based ceramics for LTCC applications[J]. J. Eur. Ceram. Soc., 2022,42(13):5691-5697. doi: 10.1016/j.jeurceramsoc.2022.06.033

    10. [10]

      Zhou D, Wang H, Pang L X, Randall C A, Yao X. Bi2O3-MoO3 binary system: An alternative ultralow sintering temperature microwave dielectric[J]. J. Am. Ceram. Soc., 2009,92(10):2242-2246. doi: 10.1111/j.1551-2916.2009.03185.x

    11. [11]

      Valant M, Suvorov D. Chemical compatibility between silver electrodes and low-firing binary-oxide compounds conceptual study[J]. J. Am. Ceram. Soc., 2000,83(11):2721-2729.

    12. [12]

      Valant M, Suvorov D. Glass-free low-temperature cofired ceramics: Calcium germanates, silicates and tellurates[J]. J. Eur. Ceram. Soc., 2004,24(6):1715-1719. doi: 10.1016/S0955-2219(03)00483-7

    13. [13]

      Ohashi M, Ogawa H, Kan A, Tanaka E. Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic[J]. J. Eur. Ceram. Soc., 2005,25(12):2877-2881. doi: 10.1016/j.jeurceramsoc.2005.03.158

    14. [14]

      Yoon S H, Kim D W, Cho S Y, Hong K S. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. J. Eur. Ceram. Soc., 2006,26(10/11):2051-2054.

    15. [15]

      Fang L, Wei Z, Guo H H, Sun Y H, Tang Y, Li C C. Phase composition and microwave dielectric properties of low-firing Li2A2W3O12 (A=Mg, Zn) ceramics[J]. J. Mater. Sci-Mater. Electro., 2015,26(8):5892-5895. doi: 10.1007/s10854-015-3158-1

    16. [16]

      Bian J J, Wu J Y. Designing of glass-free LTCC microwave ceramic Ca1-x(Li0.5)xWO4 by crystal chemistry[J]. J. Am. Ceram. Soc., 2012,95(1):318-323. doi: 10.1111/j.1551-2916.2011.04790.x

    17. [17]

      Zhang S, Su H, Zhang H, Jing Y L, Tang X L. Microwave dielectric properties of CaWO4-Li2TiO3 ceramics added with LBSCA glass for LTCC applications[J]. Ceram. Int., 2016,42(14):15242-15246. doi: 10.1016/j.ceramint.2016.06.161

    18. [18]

      Huang B, Chen G, Xia T, Shang F. Microwave dielectric properties of Li2WO4-added SrWO4 ceramics for LTCC applications[J]. J. Mater. Sci-Mater. Electro., 2022,33(27):21925-21934. doi: 10.1007/s10854-022-08980-6

    19. [19]

      Zhou D, Randall C A, Pang L X, Wang H, Guo J, Zhang G Q, Wu X G, Shui L, Yao X. Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature[J]. J. Am. Ceram. Soc., 2011,94(2):348-350. doi: 10.1111/j.1551-2916.2010.04312.x

    20. [20]

      Dong H L, Hu C X, Wang W J, Bao H P, Liu W J, Yang B. Novel low-permittivity, low-sintering-temperature Na2WO4 microwave dielectric ceramics for LTCC applications[J]. J. Ceram. Sci. Technol., 2018,9(4):471-476.

    21. [21]

      Hao J, Guo J, Zhao E, Si M M, Yuan X F, Yao F Z, Wang H. Grain size effect on microwave dielectric properties of Na2WO4 ceramics prepared by cold sintering process[J]. Ceram. Int., 2020,46(17):27193-27198. doi: 10.1016/j.ceramint.2020.07.200

    22. [22]

      Hanuza J, Benzar A, Haznar A, Maczka M, Pietraszko A, Maas van der J H. Structure and vibrational dynamics of tetragonal NaBi(WO4)2 scheelite crystal[J]. Vib. Spectrosc., 1996,12(1996):25-36.

    23. [23]

      LIU J H, YILI C R, SUN J, WANG Y W, LI J L, ZHANG L, YU Y Q. Growth of Nd doped NaBi(WO4)2 crystal[J]. Journal of the Chinese Ceramic Society, 2003,31(2):165-168.  

    24. [24]

      LI J L, XU B, LIU J H, LI Y H, LI L, ZHANG L, ZHAO Y. Study on crystal growth parameters for NaBi(WO4)2 single crystal[J]. Journal of Synthetic Crystals, 2001,30(3):250-255.  

    25. [25]

      Shannon R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. J. Appl. Phys., 1993,73(1):348-366. doi: 10.1063/1.353856

    26. [26]

      Zhang G Q, Wang H, Guo J, He L, Wei D D, Yuan Q B. Ultra-low sintering temperature microwave dielectric ceramics based on Na2O-MoO3 binary system[J]. J. Am. Ceram. Soc., 2015,98(2):528-533. doi: 10.1111/jace.13297

    27. [27]

      Feteira A, Sinclair D C. Microwave dielectric properties of low firing temperature Bi2W2O9 ceramics[J]. J. Am. Ceram. Soc., 2008,91(4):1338-1341.

    28. [28]

      Guo B, Liu P, Yang T, Zhang H W. Thermal stable microwave dielectric properties of CdWO4 ceramics prepared by high energy ball milling method[J]. J. Alloy. Compd., 2015,650:777-782.

  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    5. [5]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    8. [8]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    17. [17]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    18. [18]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(3)
  • Abstract views(419)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return