Dielectric properties of low-temperature sintered NaBi(WO4)2 ceramics
- Corresponding author: Qiu-Hong YANG, yangqiuhong@shu.edu.cn
Citation: Su ZHANG, Qiu-Hong YANG, Qi-Di LI. Dielectric properties of low-temperature sintered NaBi(WO4)2 ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1923-1930. doi: 10.11862/CJIC.2023.149
Sebastian M T, Jantunen H. Low loss dielectric materials for LTCC applications: A review[J]. Int. Mater. Rev., 2013,53(2):57-90.
Yu H T, Liu J S, Zhang W L, Zhang S R. Ultra-low sintering temperature ceramics for LTCC applications: A review[J]. J. Mater. Sci-Mater. Electron., 2015,26(12):9414-9423. doi: 10.1007/s10854-015-3282-y
Sebastian M T, Wang H, Jantunen H. Low temperature co-fired ceramics with ultra-low sintering temperature: A review[J]. Curr. Opin. Solid State Mater. Sci., 2016,20(3):151-170. doi: 10.1016/j.cossms.2016.02.004
Imanaka Y. Multilayered low temperature cofired ceramics (LTCC) technology. New York: Springer Science & Business Media, 2005:1-98
Yu H T, Ju K, Wang K M. A novel glass-ceramic with ultra-low sintering temperature for LTCC Application[J]. J. Am. Ceram. Soc., 2014,97(3):704-707. doi: 10.1111/jace.12854
Xi J, Cheng G H, Liu F, Shang F, Xu J, Zhou C R, Yuan C G, Yuan C L. Synthesis, microstructure and characterization of ultra-low permittivity CuO-ZnO-B2O3-Li2O glass/Al2O3 composites for ULTCC application[J]. Ceram. Int., 2017,18(45):24431-24436.
Pullar R C, Farrah S, Alford N M. MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics[J]. J. Eur. Ceram. Soc., 2007,27(2/3):1059-1063.
Wang X Y, Lv J Q, Xu Y, Zhang L C, Shen Y, Zhou H F, Di Z, Song K X, Guo H, Shi F. Dielectric responses and structure-property relationships of Ca1-xBaxWO4 composite microwave dielectric ceramics[J]. J. Alloy. Compd., 2022,925166669. doi: 10.1016/j.jallcom.2022.166669
Zhang Q, Xu L L, Tang X L, Zhang H W, Zhou Y T, Jing Y L, Li Y N, Su H. Structural characteristics and microwave dielectric properties of Zn1-xBixVxW1-xO4-based ceramics for LTCC applications[J]. J. Eur. Ceram. Soc., 2022,42(13):5691-5697. doi: 10.1016/j.jeurceramsoc.2022.06.033
Zhou D, Wang H, Pang L X, Randall C A, Yao X. Bi2O3-MoO3 binary system: An alternative ultralow sintering temperature microwave dielectric[J]. J. Am. Ceram. Soc., 2009,92(10):2242-2246. doi: 10.1111/j.1551-2916.2009.03185.x
Valant M, Suvorov D. Chemical compatibility between silver electrodes and low-firing binary-oxide compounds conceptual study[J]. J. Am. Ceram. Soc., 2000,83(11):2721-2729.
Valant M, Suvorov D. Glass-free low-temperature cofired ceramics: Calcium germanates, silicates and tellurates[J]. J. Eur. Ceram. Soc., 2004,24(6):1715-1719. doi: 10.1016/S0955-2219(03)00483-7
Ohashi M, Ogawa H, Kan A, Tanaka E. Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic[J]. J. Eur. Ceram. Soc., 2005,25(12):2877-2881. doi: 10.1016/j.jeurceramsoc.2005.03.158
Yoon S H, Kim D W, Cho S Y, Hong K S. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. J. Eur. Ceram. Soc., 2006,26(10/11):2051-2054.
Fang L, Wei Z, Guo H H, Sun Y H, Tang Y, Li C C. Phase composition and microwave dielectric properties of low-firing Li2A2W3O12 (A=Mg, Zn) ceramics[J]. J. Mater. Sci-Mater. Electro., 2015,26(8):5892-5895. doi: 10.1007/s10854-015-3158-1
Bian J J, Wu J Y. Designing of glass-free LTCC microwave ceramic Ca1-x(Li0.5)xWO4 by crystal chemistry[J]. J. Am. Ceram. Soc., 2012,95(1):318-323. doi: 10.1111/j.1551-2916.2011.04790.x
Zhang S, Su H, Zhang H, Jing Y L, Tang X L. Microwave dielectric properties of CaWO4-Li2TiO3 ceramics added with LBSCA glass for LTCC applications[J]. Ceram. Int., 2016,42(14):15242-15246. doi: 10.1016/j.ceramint.2016.06.161
Huang B, Chen G, Xia T, Shang F. Microwave dielectric properties of Li2WO4-added SrWO4 ceramics for LTCC applications[J]. J. Mater. Sci-Mater. Electro., 2022,33(27):21925-21934. doi: 10.1007/s10854-022-08980-6
Zhou D, Randall C A, Pang L X, Wang H, Guo J, Zhang G Q, Wu X G, Shui L, Yao X. Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature[J]. J. Am. Ceram. Soc., 2011,94(2):348-350. doi: 10.1111/j.1551-2916.2010.04312.x
Dong H L, Hu C X, Wang W J, Bao H P, Liu W J, Yang B. Novel low-permittivity, low-sintering-temperature Na2WO4 microwave dielectric ceramics for LTCC applications[J]. J. Ceram. Sci. Technol., 2018,9(4):471-476.
Hao J, Guo J, Zhao E, Si M M, Yuan X F, Yao F Z, Wang H. Grain size effect on microwave dielectric properties of Na2WO4 ceramics prepared by cold sintering process[J]. Ceram. Int., 2020,46(17):27193-27198. doi: 10.1016/j.ceramint.2020.07.200
Hanuza J, Benzar A, Haznar A, Maczka M, Pietraszko A, Maas van der J H. Structure and vibrational dynamics of tetragonal NaBi(WO4)2 scheelite crystal[J]. Vib. Spectrosc., 1996,12(1996):25-36.
LIU J H, YILI C R, SUN J, WANG Y W, LI J L, ZHANG L, YU Y Q. Growth of Nd doped NaBi(WO4)2 crystal[J]. Journal of the Chinese Ceramic Society, 2003,31(2):165-168.
LI J L, XU B, LIU J H, LI Y H, LI L, ZHANG L, ZHAO Y. Study on crystal growth parameters for NaBi(WO4)2 single crystal[J]. Journal of Synthetic Crystals, 2001,30(3):250-255.
Shannon R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. J. Appl. Phys., 1993,73(1):348-366. doi: 10.1063/1.353856
Zhang G Q, Wang H, Guo J, He L, Wei D D, Yuan Q B. Ultra-low sintering temperature microwave dielectric ceramics based on Na2O-MoO3 binary system[J]. J. Am. Ceram. Soc., 2015,98(2):528-533. doi: 10.1111/jace.13297
Feteira A, Sinclair D C. Microwave dielectric properties of low firing temperature Bi2W2O9 ceramics[J]. J. Am. Ceram. Soc., 2008,91(4):1338-1341.
Guo B, Liu P, Yang T, Zhang H W. Thermal stable microwave dielectric properties of CdWO4 ceramics prepared by high energy ball milling method[J]. J. Alloy. Compd., 2015,650:777-782.
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036