Citation: Xu WU, Wei CHEN, Bo WANG, Jiao-Jing SHAO, Quan-Sheng OUYANG. Perovskite Ba0.97Ca0.03Sn0.08Ti0.92O3-δ as polysulfide immobilizer for lithium-sulfur batteries[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1800-1806. doi: 10.11862/CJIC.2023.145 shu

Perovskite Ba0.97Ca0.03Sn0.08Ti0.92O3-δ as polysulfide immobilizer for lithium-sulfur batteries

Figures(4)

  • We prepared perovskite Ba0.97Ca0.03Sn0.08Ti0.92O3-δ (BCST) with oxygen vacancies as polysulfide (LiPS) immobilizer in Li-S batteries through strong bonding interactions. As a catalyst for promoting LiPS conversion, Ba0.97Ca0.03Sn0.08Ti0.92O3-δ/Ketjen black/sulfur (BCST/KB/S) cathode delivered a high initial specific discharge capacity of 1 164.3 mAh·g-1 and exceptional cycling stability with a low-capacity decay of only 0.052% per cycle over 800 cycles.
  • 加载中
    1. [1]

      Manthiram A, Fu Y, Su Y S. Challenges and prospects of lithium-sulfur batteries[J]. Acc. Chem. Res., 2012,46(5):1125-1134.

    2. [2]

      Li G R, Wang S, Zhang Y N, Li M, Chen Z W, Lu J. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Adv. Mater., 2018,30(22)1705590. doi: 10.1002/adma.201705590

    3. [3]

      Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014,114(23):11751-11787. doi: 10.1021/cr500062v

    4. [4]

      Shi H F, Lv W, Zhang C, Wang D W, Ling G W, He Y B, Kang F Y. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up[J]. Adv. Funct. Mater., 2018,28(38)1800508. doi: 10.1002/adfm.201800508

    5. [5]

      Ma L B, Lv Y H, Wu J X, Chen Y M, Jin Z. Recent Advances in emerging non-lithium metal-sulfur batteries: A review[J]. Adv. Energy. Mater., 2021,11(24)2100770. doi: 10.1002/aenm.202100770

    6. [6]

      Zhao Q N, Zhao K Q, Ji G P, Guo X L, Han M, Wen J, Ren Z L, Zhao S C, Gao Z, Wang R H, Li M, Sun K, Hu N, Xu C H. High sulfur loading, rGO-linked and polymer binder-free cathodes based on rGO wrapped N, P-codoped mesoporous carbon as sulfur host for Li-S batteries[J]. Chem. Eng. J., 2019,361:1043-1052. doi: 10.1016/j.cej.2018.12.153

    7. [7]

      SUN L, XIE J, CHENG F, CHEN R Y, ZHU Q L, JIN Z. Rapid construction of two-dimensional N, S-co-doped porous carbon for realizing high-performance lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(6):1189-1198.  

    8. [8]

      Yang D, Ni W, Cheng J L, Wang Z P, Wang T, Guan Q, Zhang Y, Wu H, Li X D, Wang B. Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium-sulfur batteries[J]. Appl. Surf. Sci., 2017,413:209-218. doi: 10.1016/j.apsusc.2017.04.046

    9. [9]

      Sun L, Liu Y X, Zhang K Q, Cheng F, Jiang R Y, Liu Y Q, Zhu J, Jin Z, Pang H. Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries[J]. Nano Res., 2022,15(6):5105-5113. doi: 10.1007/s12274-022-4134-8

    10. [10]

      Yan W, Wei J, Chen T, Duan L, Wang L, Xue X L, Cehn R P, Kong W H, Lin H N, Li C H, Jin Z. Superstretchable, thermostable and ultrahigh-loading lithium-sulfur batteries based on nanostructural gel cathodes and gel electrolytes[J]. Nano Energy., 2021,80105510. doi: 10.1016/j.nanoen.2020.105510

    11. [11]

      Song X, Wang S Q, Bao Y, Liu G X, Sun W P, Ding L X, Liu H K, Wang H H. A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017,5(15):6832-6839. doi: 10.1039/C7TA01171G

    12. [12]

      Chen K, Cao J, Lu Q Q, Wang Q G, Yao M J, Han M M, Niu Z Q, Chen J. Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries[J]. Nano Res., 2018,11(3):1345-1357. doi: 10.1007/s12274-017-1749-2

    13. [13]

      Ma L B, Zhu G Y, Zhang W J, Zhao P Y, Hu Y, Wang Y R, Wang L, Chen R P, Chen T, Tie Z X, Liu J, Jin Z. Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries[J]. Nano Res., 2018,11:6436-6446. doi: 10.1007/s12274-018-2168-8

    14. [14]

      GAO R, WANG Z Y, WANG L, CHEN P, LIU S, MA Z P, SHAO G J. Ni2P nanosheets on graphene as sulfur-based composite cathode material for lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(4):685-694.  

    15. [15]

      Guo P Q, Liu D Q, Liu Z G, Shang X N, Liu Q M, He D Y. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries[J]. Electrochim. Acta, 2017,256:28-36. doi: 10.1016/j.electacta.2017.10.003

    16. [16]

      Li Y Y, Cai Q F, Wang L, Li Q W, Peng X, Gao B, Huo K F, Chu P K. Mesoporous TiO2 nanocrystals/graphene as an efficient sulfur host material for high-performance lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2016,8(36):23784-23792. doi: 10.1021/acsami.6b09479

    17. [17]

      Ni L, Zhao G G, Wang Y T, Wu Z, Wang W, Liao Y Y, Yang G, Diao G W. Coaxial carbon/MnO2 hollow nanofibers as sulfur hosts for high-performance lithium-sulfur batteries[J]. Chem. Asian J., 2017,12(24):3128-3134. doi: 10.1002/asia.201701343

    18. [18]

      PAN P F, CHEN P, FANG Y N, SHAN Q, CHEN N N, FENG X M, LIU R Q, LI P, MA Y W. V2O5 hollow spheres as high efficient sulfur host for Li-S batteries[J]. Chinese J. Inorg. Chem., 2020,36(3):575-583.  

    19. [19]

      Sun L, Liu Y X, Xie J, Fan L L, Wu J, Jiang R Y, Jin Z. Polar Co9S8 anchored on pyrrole-modified graphene with in situ growth of CNTs as multifunctional self-supporting medium for efficient lithium-sulfur batteries[J]. Chem. Eng. J., 2023,451138370. doi: 10.1016/j.cej.2022.138370

    20. [20]

      Sun Z H, Zhang J Q, Yin L C, Hu G J, Fang R P, Cheng H M, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nat. Commun., 2017,814627. doi: 10.1038/ncomms14627

    21. [21]

      CHEN P, LIU Y R, PAN P F, FANG Y N, SHAN Q, FENG X M, LIU R Q, LIN X J, MA Y W. Assembly and application for Li-S batteries of multi-walled carbon nanotube-vanadium nitride hollow sphere composite[J]. Chinese J. Inorg. Chem., 2021,37(7):1184-1190.  

    22. [22]

      NING D Z, SUN H G. Performance of the inward radial hollow TiN particles as cathodes for lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(7):1375-1381.  

    23. [23]

      Zeng S B, Li L G, Xie L H, Zhao D K, Wang N, Chen S W. Conducting polymers crosslinked with sulfur as cathode materials for high-rate, ultralong-life lithium-sulfur batteries[J]. ChemSusChem, 2017,10(17):3378-3386. doi: 10.1002/cssc.201700913

    24. [24]

      Wang H Q, Zhang W C, Xu J Z, Guo Z P. Advances in polar materials for lithium-sulfur batteries[J]. Adv. Funct. Mater., 2018,28(38)1707520. doi: 10.1002/adfm.201707520

    25. [25]

      Zhang S Y, Rong X C, Li T, Ren W J, Ren H, Zhi L J, Wu M B, Li Z T. Theoretical kinetic quantitative calculation predicted the expedited polysulfides degradation[J]. Nano Res., 2022. doi: 10.1007/s12274-022-5061-4

    26. [26]

      Wang Y K, Zhang R F, Chen J, Wu H, Lu S Y, Wang K, Li H L, Harris C, Xi K, Kumar R V, Ding S J. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering[J]. Adv. Energy Mater., 2019,9(24)1900953. doi: 10.1002/aenm.201900953

    27. [27]

      Luo D, Li G R, Deng Y P, Zhang Z, Li J G, Liang R L, Li M, Jiang Y, Zhang W W, Liu Y S, Lei W, Yu A P, Chen Z W. Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium-sulfur batteries[J]. Adv. Energy Mater., 2019,9(18)1900228. doi: 10.1002/aenm.201900228

    28. [28]

      Ou G, Yang C, Liang Y W, Hussain N, Ge B H, Huang K, Xu Y S, Wei H H, Zhang R Y, Wu H. Surface engineering of perovskite oxide for bifunctional oxygen electrocatalysis[J]. Small Methods, 2019,3(2)1800279. doi: 10.1002/smtd.201800279

    29. [29]

      Jung J I, Park S, Kim M G, Cho J. Tunable internal and surface structures of the bifunctional oxygen perovskite catalysts[J]. Adv. Energy Mater., 2015,5(24)1501560. doi: 10.1002/aenm.201501560

    30. [30]

      Kong L, Chen X, Li B Q, Peng H J, Huang J Q, Xie J, Zhang Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries[J]. Adv. Mater., 2018,30(2)1705219. doi: 10.1002/adma.201705219

    31. [31]

      Zhao Z Y, Li G R, Wang Z, Feng M, Sun M Z, Xue X X, Liu R P, Jia H S, Wang Z Z, Zhang W, Li H B, Chen Z W. Black BaTiO3 as multi-functional sulfur immobilizer for superior lithium sulfur batteries[J]. J. Power Sources, 2019,434226729. doi: 10.1016/j.jpowsour.2019.226729

    32. [32]

      Xie K Y, You Y, Yuan K, Yuan K, Lu W, Zhang K, Xu F, Ye M, Ke S M, Shen C, Zeng X R, Fan X L, Wei B Q. Ferroelectric-enhanced polysulfide trapping for lithium-sulfur battery improvement[J]. Adv. Mater., 2017,29(6)1604724. doi: 10.1002/adma.201604724

    33. [33]

      Zhang Z X, Zhang L, Liu Y Y, Yu C, Yan X L, Xu B, Wang L M. Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries[J]. J. Alloy. Compd., 2018:227-235.

    34. [34]

      Ding R, Zhang X, Sun X W. Organometal trihalide perovskites with intriguing ferroelectric and piezoelectric properties[J]. Adv. Funct. Mater., 2017,27(43)1702207. doi: 10.1002/adfm.201702207

    35. [35]

      Rabuffetti F A, Brutchey R L. Structural evolution of BaTiO3 nanocrystals synthesized at room temperature[J]. J. Am. Chem. Soc., 2012,134(22)9475. doi: 10.1021/ja303184w

    36. [36]

      Barbero B P, Eloy P, Cadús L. La1-xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS[J]. Appl. Surf. Sci., 2006,253(3):1489-1493. doi: 10.1016/j.apsusc.2006.02.035

    37. [37]

      Xu L L, Zhao H Y, Sun M Z, Huang B L, Wang J W, Xia J L, Li N, Yin D D, Luo M, Luo F, Du Y P, Yan C H. Oxygen vacancies on layered niobic acid that weaken the catalytic conversion of polysulfides in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2019,131(33):11615-11620.

    38. [38]

      Lin H B, Zhang S L, Zhang T R, Ye H L, Yao Q F, Zheng G Y W, Lee J Y. Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium-sulfur batteries[J]. Adv. Energy Mater., 2018,8(30)1801868. doi: 10.1002/aenm.201801868

    39. [39]

      Zhang L, Wang Y, Niu Z Q, Chen J. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries[J]. Carbon, 2019,141:400-416. doi: 10.1016/j.carbon.2018.09.067

    40. [40]

      Yan Z L. Symmetric cells as an analytical tool for battery research: Assembly, operation, and data analysis strategies[J]. J. Electrochem. Soc., 2023,170(2)020521. doi: 10.1149/1945-7111/acaf42

  • 加载中
    1. [1]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    6. [6]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    7. [7]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    8. [8]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    9. [9]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    12. [12]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    13. [13]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    14. [14]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    15. [15]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    16. [16]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    17. [17]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    18. [18]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    19. [19]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    20. [20]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

Metrics
  • PDF Downloads(3)
  • Abstract views(472)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return