Preparation of SiOx-C composite materials with a reinforced concrete-like structure for lithium-ion batteries
- Corresponding author: Hong-Bin DU, hbdu@nju.edu.cn
Citation:
Jin-Yang MA, Ya-Nan XU, Yu ZHANG, Hong-Bin DU. Preparation of SiOx-C composite materials with a reinforced concrete-like structure for lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(9): 1766-1774.
doi:
10.11862/CJIC.2023.144
光催化作为解决环境和能源危机最有前景的技术之一,能够将低密度的太阳能转化为高密度的化学能,并且能够通过光催化反应分解各种污染物[1-3]。相比传统用于水污染治理的技术,如吸附、生物降解以及高温焚烧等,光催化具有价格低廉、不产生二次污染、反应条件温和等优势[5-9]。近年来,由特定的[Bi2O2]2+层和互层离子或基团组成的氯氧化铋(BiOCl)具有的化学稳定性、独特的层结构和易于合成的特点使其备受关注[10],但其带隙能宽(约3.5 eV),只有在紫外光(λ < 400 nm)条件下才能被激发,限制了其应用[11-16]。因此,如何提高BiOCl的可见光吸收范围成为研究的难点与热点。
光催化材料的能带结构决定了其光吸收波长范围,通过引入氧空位(OV)可以有效调控能隙带宽与电子-空穴的分离效率,从而提高材料在可见光范围内的催化效率[17-18]。研究表明含有丰富OV的BiOCl纳米片在高达500 nm的波长下表现出出色的全氟辛酸(PFOA)降解率。随着制备过程中碱源的改变,BiOCl纳米片中OV的比例从0.573增加到0.981,BiOCl对PFOA降解和脱氟的光催化性能提高了3~4倍[19]。
由于玻璃采用高温-淬冷方法,保留了高温阶段的无定形结构,该结构中存在大量的非桥氧;铋玻璃相比硅玻璃具有更长的Bi—O键,因此具有更加松散的网络结构,可能形成的OV也更多。基于这个思路,我们以铋玻璃作为铋源,初次通过直接的盐酸腐蚀法将玻璃中的氧缺陷引入到BiOCl材料。并且通过添加不同网络外体组分,研究玻璃网络结构的破坏对BiOCl材料的OV浓度的影响。
试剂包括氧化铋(中国医药集团有限公司)、硼酸(BOR Mining Chemical Company,俄罗斯)、氧化锌(安徽省黄山县锦华氧化锌厂)、碳酸锶(上海红蝶化工有限公司)、碳酸钠(上海欧金实业有限公司)和盐酸(阿拉丁)。
我们在Bi2O3-B2O3-ZnO (BBZ)玻璃的基础上加入了2种网络外体SrO和Na2O组分,原料分别来源于Na2CO3和SrCO3,玻璃组成设计如表 1所示。
Sample | Molar fraction/% | ||||
Bi2O3 | B2O3 | ZnO | SrO | Na2O | |
BBZ | 40 | 30 | 30 | — | — |
BBZSr | 40 | 30 | 20 | 10 | — |
BBZSN | 40 | 30 | 10 | 10 | 10 |
铋玻璃的制备采用传统的熔融淬冷方法。分别称取表 1中各组分对应的原料,在球磨机上混合均匀后900 ℃熔融45 min得到均匀玻璃液,然后再进行急冷得到玻璃碎片,研磨玻璃碎片得到铋玻璃粉。
采用一步的酸腐蚀法制备BiOCl材料。分别将5 g BBZ、BBZSr和BBZSN玻璃粉加入100 mL 6% 的HCl溶液中搅拌2 h得到产物。将所得产物用蒸馏水和乙醇洗涤数次,100 ℃干燥过夜,分别制得BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN粉体。
通过X射线粉末衍射仪(XRD,德国,Bruker D8 ADVANCE)对样品进行物相分析,电压40 kV,电流40 mA,扫描范围10° ~80° (2θ),靶材Cu Kα,波长0.154 06 nm。通过FEIVeriosG4型扫描电子显微镜(SEM,工作电压3.0 kV)及JEM-2010型透射电子显微镜(TEM,工作电压200 kV)观察样品的微观形貌。采用傅里叶变换红外光谱仪(FT-IR)和拉曼光谱仪(Raman)表征材料的化学组分。通过紫外可见光谱仪(Shimadzu UV-3600)测定样品的紫外可见漫反射(UV-Vis DRS)谱图,扫描范围为300~800 nm。通过电子顺磁共振(EPR)对材料光激发下的活性基团进行表征。使用荧光光谱仪(PL,FLS980)对材料进行光致发光测试。
通过RhB(10 mg·L-1)在紫外光和可见光照射下的光催化分解实验来评估BiOCl材料的光催化活性。使用具有400 nm截止滤光片和200~400 nm石英滤光片的300 W氙灯分别获得可见光和紫外光。在光催化实验中,将10 mg BiOCl光催化剂加入100 mL RhB溶液中并置于暗处搅拌,达到吸附-脱附平衡后再进行照射。在给定时间后,取3 mL混合物离心以除去BiOCl材料。根据RhB在553 nm处的吸光度[20-22],通过紫外分光光度计分析确定RhB浓度。
由图 1a可知,所有铋玻璃的XRD图呈现出显著的玻璃衍射特征,表明所制备的玻璃成玻性良好。从图 1b的铋玻璃的FT-IR谱图可知,玻璃的吸收峰出现在520、710、920、1 000、1 180和1 280 cm-1附近,其中,710 cm-1处的吸收峰强度随玻璃组分的增加不断增大,表明[BO4]四面体逐渐转变为[BO3]三角体[23]。另外,从拉曼光谱(图 1c)中可以看出,铋玻璃的特征峰主要集中在128、416、583、722、924、1 250 cm-1。从BBZ玻璃到BBZSN玻璃,416和583 cm-1处的峰强度明显增强,表明[BiO6]八面体向[BiO3]三角体转变[24]。结合红外光谱和拉曼光谱分析,引入SrO和Na2O作为玻璃网络外体氧化物,增加了玻璃体系游离氧的含量,使玻璃的结构更松散,加入的网络外体更多,玻璃的结构破坏就越严重。因此,与BBZ和BBZSr玻璃相比,BBZSN具有最松散的网络结构,可能引起的氧缺陷也更多。
SEM图显示了所制备的BiOCl光催化剂都呈现出纳米片形状,由基础玻璃BBZ合成的BiOCl-BBZ材料具有较大的片层结构(图 2a),在引入SrO后,BiOCl-BBZSr则呈现不规则的团聚结构(图 2b),在随后的网络外体Na2O的添加,更大程度地对玻璃的骨架结构进行破坏,使得所制备的BiOCl-BBZSN材料具有更小的纳米碎片团聚结构(图 2c)。
通过XRD分析确认样品的相纯度和结晶度,结果如图 3所示。由图可知,所有样品的XRD峰均可以很好地对应四方相BiOCl(PDF No.06-0249),晶格参数a=0.389 1 nm和c=0.736 9 nm。图中未观察到杂质峰,表明所制备的样品纯度高。
为了进一步了解样品的微观结构,我们对BiOCl-BBZSN进行了TEM分析,如图 4a所示。高分辨率透射电子显微镜(HRTEM,图 4b)揭示了纳米片的高度结晶性和清晰的晶格条纹,晶格间距为0.275 nm,对应BiOCl(110)面。插图中的选区电子衍射(SAED)图案中标出的2组相邻点之间的夹角为45°,与BiOCl光催化剂的(100)和(110)晶面夹角的理论值一致[25-26],可以索引到[001]区域轴,表明BiOCl-BBZSN的暴露面是(001)面。
为了探索BiOCl光催化剂中OV的存在,对其进行了EPR测试。图 5a、5c显示了由3种不同的铋玻璃制备的BiOCl光催化剂的OV。其中,BiOCl-BBZSN在黑暗和可见光照条件下都表现出最强的OV信号。此外,比较了BiOCl-BBZSN光催化剂在黑暗和光照条件下的差异,如图 5b所示,其OV信号没有显著变化,表明OV大部分来源于光催化材料本身。为了进一步探索BiOCl光催化剂OV的来源,我们还对原始铋玻璃进行了OV表征,如图 5d所示,3种铋玻璃在黑暗条件下g=2.003处也显示出强氧信号,证明制备的BiOCl光催化剂通过简单的一步化学反应方法保留了玻璃中的氧缺陷。不难看出,BBZSN玻璃具有最强的OV信号,这可能是其松散的网络结构导致了更多的氧缺陷,这也是BBZSN玻璃制备的BiOCl-BBZSN光催化剂OV浓度最高的原因。另外,对盐酸刻蚀前后的BBZSN玻璃和BiOCl-BBZSN的氧缺陷浓度进行对比分析发现(图 5e),在黑暗条件下,BiOCl材料的OV峰强几乎与原始铋玻璃的相同,这进一步表明BiOCl-BBZSN材料的OV由BBZSN玻璃原位引入。
众所周知,OV的作用之一是调节光催化的带隙结构[27-28]。图 6a显示了所制备的BiOCl光催化的吸收边与BiOCl-BBZ、BiOCl-BBZSr相比,BiOCl-BBZSN的吸收带边缘发生红移现象。图 6b显示了BiOCl光催化剂带隙能(Eg)的变化。值得注意的是,BiOCl-BBZSN的带隙能(2.95 eV)比其他2个样品更窄,表明OV的存在可以降低带隙值以吸收更多可见光。为了进一步显示光催化材料的导带和价带的位置,采用VB-XPS测试所制备样品的VB(价带)状态总密度。由图 6c可知,所得的BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN的价带位置(EVB)分别为2.49、2.62和2.72 eV,另外通过公式:ECB=Eg-EVB计算了光催化材料的导带位置(ECB),光催化材料的能带结构如图 6d所示。光催化剂在降解染料的过程中需要超氧自由基(·O2-)、羟基自由基(·OH)和空穴等活性物质,而价带位置越低,氧化性越强,越有利于活性基团的产生和对染料的氧化[29]。BiOCl-BBZSN材料具有比其他2个样品更低的价带位置,因此可以产生更多的氧活性物质,提高其降解RhB染料的能力。
通过降解实验进一步研究了OV对光催化性能的影响。暗箱处理30 min以测试样品对染料的吸附能力,如图 7所示,BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN对染料的吸附率分别为7.12%、8.23%和12.35%。在紫外光照射下,BiOCl-BBZSN、BiOCl-BBZSr和BiOCl-BBZ的RhB降解率分别达到95.7% (35 min)、95.3%(40 min)和93.5%(60 min),表明OV对可见光下光催化材料的降解有较大影响。所制备的BiOCl在可见光下仍具有对RhB染料的降解能力,这可部分归因于染料敏化作用。在可见光下照射100 min时,BiOCl-BBZSN的降解率可达到93.1%,而BiOCl-BBZ和BiOCl-BBZSr分别只有72.3% 和54.4%,这可归因于丰富的OV调整了带隙,增强了材料对可见光的吸收。此外,对不添加光催化剂的RhB染料进行光降解实验发现,在紫外和可见光下染料的浓度没有明显的变化,说明染料的降解是源于样品的光降解作用。OV作为捕获电子的活性位点,O2和H2O分子可以在OV处与光生电子反应产生活性氧(ROS)。如图 8a、8b所示,在可见光照下观察到的EPR信号对应DMPO-·O2-和DMPO-·OH,其中BiOCl-BBZSN的ROS(·O2-、·OH)浓度最高,进一步说明BiOCl-BBZSN具有最好的光催化性能。
光诱导载流子的分离和迁移效率是光催化降解的重要因素,其主要通过瞬态光电流响应(I-t)、电化学阻抗(EIS)和光致发光光谱(PL)表征。一般认为光电流密度越高,电子-空穴对分离效率越高[30]。通过考察不同催化剂在可见光照条件下产生的光电流强度,间接说明催化剂的载流子分离效率。实验结果如图 9a所示,BiOCl-BBZSN作为光电极所产生的光电流强度约为0.2 μA·cm-2,分别约为BiOCl-BBZSr和BiOCl-BBZ的2倍和6倍。这些研究结果进一步说明了富氧空位的引入提高了BiOCl-BBZSN中光生载流子的分离迁移效率,有助于光催化活性的提高。此外,由图 9b可知,与BiOCl-BBZ和BiOCl-BBZSr光催化剂相比,BiOCl-BBZSN具有更小的EIS半径,这意味着载流子迁移到表面的阻力更小。另外,使用PL谱图来确认电荷复合率(图 9c),较低的PL强度和较长的寿命与较低的电荷载流子复合率有关。BiOCl-BBZSN在468 nm附近的发光强度明显最弱,表明由BBZSN铋玻璃制备的BiOCl具有更丰富的OV,可以极大地促进光诱导载流子的空间分离,减少电子-空穴对的复合,从而进一步提高光催化剂的降解性能。
采用简单的一步化学反应法制备富氧空位的BiOCl光催化剂。实验结果表明,光催化剂的OV主要源于玻璃物种的原始氧缺陷。其中,用BBZSN玻璃制备的BiOCl-BBZSN光催化剂染料的降解率最高,这是因为BBZSN玻璃中引入了更多的网络外体,使玻璃结构最松散,引起更多的氧缺陷。富氧缺陷的存在调节了BiOCl材料的能带结构并且通过捕获电子加速了电子-空穴对的分离,从而改善材料的光催化降解性能。该研究在制备方法和所用铋原料方面均具有创新性,可为高效光催化剂的工业化大规模制备作出贡献。
Li Y Z, Yan K, Lee H W, Lu Z D, Liu N, Cui Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nat. Energy, 2016,1(2)15029. doi: 10.1038/nenergy.2015.29
Zhang H, Zong P, Chen M, Jin H, Bai Y, Li S W, Ma F, Xu H, Lian K. In situ synthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-ion batteries[J]. ACS Nano, 2019,13(3):3054-3062. doi: 10.1021/acsnano.8b08088
Yang W, Liu H, Ren Z H, Jian N, Gao M X, Wu Y J, Liu Y F, Pan H G. A novel multielement, multiphase, and B-containing SiOx composite as a stable anode material for Li-ion batteries[J]. Adv. Mater. Interfaces, 2019,6(5)1801631. doi: 10.1002/admi.201801631
Shi L R, Pang C L, Chen S L, Wang M H, Wang K X, Tan Z J, Gao P, Ren J G, Huang Y Y, Peng H L, Liu Z F. Vertical graphene gowth on SiO microparticles for stable lithium ion battery anodes[J]. Nano Lett., 2017,17(6):3681-3687. doi: 10.1021/acs.nanolett.7b00906
Tang C J, Liu Y N, Xu C, Zhu J X, Wei X J, Zhou L, He L, Yang W, Mai L Q. Ultrafine nickel-nanoparticle-enabled SiO2 hierarchical hollow spheres for high-performance lithium storage[J]. Adv. Funct. Mater., 2018,28(3)1704561. doi: 10.1002/adfm.201704561
Zhou N, Wu Y F, Zhou Q, Li Y R, Liu S H, Zhang H B, Zhou Z, Xia M. Enhanced cycling performance and rate capacity of SiO anode material by compositing with monoclinic TiO2(B)[J]. Appl. Surf. Sci., 2019,486:292-302. doi: 10.1016/j.apsusc.2019.05.025
Li G, Li J Y, Yue F S, Xu Q, Zuo T T, Yin Y X, Guo Y G. Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries[J]. Nano Energy, 2019,60:485-492. doi: 10.1016/j.nanoen.2019.03.077
Yang J P, Wang Y X, Li W, Wang L J, Fan Y C, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu H K, Dou S X, Zhao D Y. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage[J]. Adv. Mater., 2017,29(48)1700523. doi: 10.1002/adma.201700523
Ma T Y, Xu H Y, Yu X G, Li H Y, Zhang W G, Cheng X L, Zhu W T, Qiu X P. Lithiation behavior of coaxial hollow nanocables of carbonsilicon composite[J]. ACS Nano, 2019,13(2):2274-2280.
Sun L, Su T T, Xu L, Liu M P, Du H B. Two-dimensional ultra-thin SiOx (0<x<2) nanosheets with long-term cycling stability as lithium ion battery anodes[J]. Chem. Commun., 2016,52(23):4341-4344. doi: 10.1039/C6CC00723F
Zhou X M, Liu Y, Ren Y, Mu T S, Yin X C, Du C Y, Huo H, Cheng X Q, Zuo P J, Yin G P. Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithiumion batteries[J]. Adv. Funct. Mater., 2021,31(21)2101145. doi: 10.1002/adfm.202101145
Chen R X, Zhou Y C, Li X D. Cotton-derived Fe/Fe3C-encapsulated carbon nanotubes for high-performance lithium-sulfur batteries[J]. Nano Lett., 2022,22(3):1217-1224. doi: 10.1021/acs.nanolett.1c04380
Zeng Y X, Zhang X Y, Qin R F, Liu X Q, Fang P P, Zheng D Z, Tong Y X, Lu X H. Dendrite-free zinc deposition induced by multi-functional CNT frameworks for stable flexible Zn-ion batteries[J]. Adv. Mater., 2019,31(36)e1903675. doi: 10.1002/adma.201903675
Zhang Y P, Wang L L, Xu H, Gao J M, Chen D, Han W. 3D chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries[J]. Adv. Funct. Mater., 2020,30(12)1909372. doi: 10.1002/adfm.201909372
Xu Q, Sun J K, Li G, Li J Y, Yin Y X, Guo Y G. Facile synthesis of a SiOx/asphalt membrane for high performance lithium-ion battery anodes[J]. Chem. Commun., 2017,53(89):12080-12083. doi: 10.1039/C7CC05816K
Guo X T, Li W T, Geng P B, Zhang Q Y, Pang H, Xu Q. Construction of SiOx/nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage[J]. J. Colloid Interf. Sci., 2022,606(1):784-792.
Chen X C, Kierzek K, Jiang Z W, Chen H M, Tang T, Wojtoniszak M, Kalenczuk R J, Chu P K, Borowiak-Palen E. Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter[J]. J. Phys. Chem. C, 2011,115(36):17717-17724. doi: 10.1021/jp205257u
Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Phys. Chem. Chem. Phys., 2007,9(11):1276-1291. doi: 10.1039/B613962K
Sasikala S P, Henry L, Yesilbag Tonga G, Huang K, Das R, Giroire B, Marre S, Rotello V M, Penicaud A, Poulin P, Aymonier C. High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids[J]. ACS Nano, 2016,10(5):5293-5303. doi: 10.1021/acsnano.6b01298
Lim K, Park H, Ha J, Kim Y T, Choi J. Dualcarbon-confined hydrangea-like SiO cluster for high-performance and stable lithium ion batteries[J]. J. Ind. Eng. Chem., 2021,101:397-404. doi: 10.1016/j.jiec.2021.05.043
Guo L, He H, Ren Y, Wang C, Li M. Core-shell SiO@F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries[J]. Chem. Eng. J., 2018,335:32-40. doi: 10.1016/j.cej.2017.10.145
Kim S J, Kim M C, Han S B, Lee G H, Choe H S, Moon S H, Kwak D H, Hong S, Park K W. 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries[J]. J. Ind. Eng. Chem., 2017,49:105-111. doi: 10.1016/j.jiec.2017.01.014
Jang J Y, Kang I, Choi J K, Jeong H, Yi K W, Hong J Y, Lee M. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes[J]. Angew. Chem. Int. Ed., 2020,59(34):14473-14480. doi: 10.1002/anie.202002411
Raza A, Jung J Y, Lee C H, Kim B G, Choi J H, Park M S, Lee S M. Swelling-controlled double-layered SiOx/Mg2SiO4/SiOx composite with enhanced initial coulombic efficiency for lithium-ion battery[J]. ACS Appl. Mater. Inter., 2021,13(6):7161-7170. doi: 10.1021/acsami.0c19975
Wang C, Wu H, Chen Z, McDowell M T, Cui Y, Bao Z N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nat. Chem., 2013,5(12):1042-1048. doi: 10.1038/nchem.1802
Tokur M, Jin M Y, Sheldon B W, Akbulut H. Stress bearing mechanism of reduced graphene oxide in silicon-based composite anodes for lithium ion batteries[J]. ACS Appl. Mater. Inter., 2020,12(30):33855-33869. doi: 10.1021/acsami.0c10064
Ian B, Ji W. Asymmetric membranes containing micron-size silicon for high performance lithium ion battery anode[J]. Electrochim. Acta, 2016,213:46-54. doi: 10.1016/j.electacta.2016.07.106
Shi H B, Shao G Q, Wu B B, Yang Z X, Zhang H G, Lv P P, Zhu Q S. Scalable synthesis of a dual-confined SiO/one-dimensional carbon/amorphous carbon anode based on heterogeneous carbon structure evolution[J]. J. Mater. Chem. A, 2021,9(46):26236-26247. doi: 10.1039/D1TA07821F
Chen S Y, Xu Y N, Du H B. One-step synthesis of uniformly distributed SiOx-C composites as stable anodes for lithium-ion batteries[J]. Dalton Trans., 2022,51(31):11909-11915. doi: 10.1039/D2DT01843H
Fu R S, Ji J J, Yun L, Jiang Y B, Zhang J, Zhou X F, Liu Z P. Graphene wrapped silicon suboxides anodes with suppressed Li-uptake behavior enabled superior cycling stability[J]. Energy Stor. Mater., 2021,35:317-326.
Li H, Peng J, Wu Z Y, Liu X L, Liu P, Chang B B, Wang X Y. Constructing novel SiOx hybridization materials by a double-layer interface engineering for high-performance lithium-ion batteries[J]. Chem. Eng. J., 2023,462142172. doi: 10.1016/j.cej.2023.142172
Li Y Z, Yan K, Lee H W, Lu Z D, Liu N, Cui Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nat. Energy, 2016,1(2)15029. doi: 10.1038/nenergy.2015.29
Zhang H, Zong P, Chen M, Jin H, Bai Y, Li S W, Ma F, Xu H, Lian K. In situ synthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-ion batteries[J]. ACS Nano, 2019,13(3):3054-3062. doi: 10.1021/acsnano.8b08088
Yang W, Liu H, Ren Z H, Jian N, Gao M X, Wu Y J, Liu Y F, Pan H G. A novel multielement, multiphase, and B-containing SiOx composite as a stable anode material for Li-ion batteries[J]. Adv. Mater. Interfaces, 2019,6(5)1801631. doi: 10.1002/admi.201801631
Shi L R, Pang C L, Chen S L, Wang M H, Wang K X, Tan Z J, Gao P, Ren J G, Huang Y Y, Peng H L, Liu Z F. Vertical graphene gowth on SiO microparticles for stable lithium ion battery anodes[J]. Nano Lett., 2017,17(6):3681-3687. doi: 10.1021/acs.nanolett.7b00906
Tang C J, Liu Y N, Xu C, Zhu J X, Wei X J, Zhou L, He L, Yang W, Mai L Q. Ultrafine nickel-nanoparticle-enabled SiO2 hierarchical hollow spheres for high-performance lithium storage[J]. Adv. Funct. Mater., 2018,28(3)1704561. doi: 10.1002/adfm.201704561
Zhou N, Wu Y F, Zhou Q, Li Y R, Liu S H, Zhang H B, Zhou Z, Xia M. Enhanced cycling performance and rate capacity of SiO anode material by compositing with monoclinic TiO2(B)[J]. Appl. Surf. Sci., 2019,486:292-302. doi: 10.1016/j.apsusc.2019.05.025
Li G, Li J Y, Yue F S, Xu Q, Zuo T T, Yin Y X, Guo Y G. Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries[J]. Nano Energy, 2019,60:485-492. doi: 10.1016/j.nanoen.2019.03.077
Yang J P, Wang Y X, Li W, Wang L J, Fan Y C, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu H K, Dou S X, Zhao D Y. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage[J]. Adv. Mater., 2017,29(48)1700523. doi: 10.1002/adma.201700523
Ma T Y, Xu H Y, Yu X G, Li H Y, Zhang W G, Cheng X L, Zhu W T, Qiu X P. Lithiation behavior of coaxial hollow nanocables of carbonsilicon composite[J]. ACS Nano, 2019,13(2):2274-2280.
Sun L, Su T T, Xu L, Liu M P, Du H B. Two-dimensional ultra-thin SiOx (0<x<2) nanosheets with long-term cycling stability as lithium ion battery anodes[J]. Chem. Commun., 2016,52(23):4341-4344. doi: 10.1039/C6CC00723F
Zhou X M, Liu Y, Ren Y, Mu T S, Yin X C, Du C Y, Huo H, Cheng X Q, Zuo P J, Yin G P. Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithiumion batteries[J]. Adv. Funct. Mater., 2021,31(21)2101145. doi: 10.1002/adfm.202101145
Chen R X, Zhou Y C, Li X D. Cotton-derived Fe/Fe3C-encapsulated carbon nanotubes for high-performance lithium-sulfur batteries[J]. Nano Lett., 2022,22(3):1217-1224. doi: 10.1021/acs.nanolett.1c04380
Zeng Y X, Zhang X Y, Qin R F, Liu X Q, Fang P P, Zheng D Z, Tong Y X, Lu X H. Dendrite-free zinc deposition induced by multi-functional CNT frameworks for stable flexible Zn-ion batteries[J]. Adv. Mater., 2019,31(36)e1903675. doi: 10.1002/adma.201903675
Zhang Y P, Wang L L, Xu H, Gao J M, Chen D, Han W. 3D chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries[J]. Adv. Funct. Mater., 2020,30(12)1909372. doi: 10.1002/adfm.201909372
Xu Q, Sun J K, Li G, Li J Y, Yin Y X, Guo Y G. Facile synthesis of a SiOx/asphalt membrane for high performance lithium-ion battery anodes[J]. Chem. Commun., 2017,53(89):12080-12083. doi: 10.1039/C7CC05816K
Guo X T, Li W T, Geng P B, Zhang Q Y, Pang H, Xu Q. Construction of SiOx/nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage[J]. J. Colloid Interf. Sci., 2022,606(1):784-792.
Chen X C, Kierzek K, Jiang Z W, Chen H M, Tang T, Wojtoniszak M, Kalenczuk R J, Chu P K, Borowiak-Palen E. Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter[J]. J. Phys. Chem. C, 2011,115(36):17717-17724. doi: 10.1021/jp205257u
Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Phys. Chem. Chem. Phys., 2007,9(11):1276-1291. doi: 10.1039/B613962K
Sasikala S P, Henry L, Yesilbag Tonga G, Huang K, Das R, Giroire B, Marre S, Rotello V M, Penicaud A, Poulin P, Aymonier C. High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids[J]. ACS Nano, 2016,10(5):5293-5303. doi: 10.1021/acsnano.6b01298
Lim K, Park H, Ha J, Kim Y T, Choi J. Dualcarbon-confined hydrangea-like SiO cluster for high-performance and stable lithium ion batteries[J]. J. Ind. Eng. Chem., 2021,101:397-404. doi: 10.1016/j.jiec.2021.05.043
Guo L, He H, Ren Y, Wang C, Li M. Core-shell SiO@F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries[J]. Chem. Eng. J., 2018,335:32-40. doi: 10.1016/j.cej.2017.10.145
Kim S J, Kim M C, Han S B, Lee G H, Choe H S, Moon S H, Kwak D H, Hong S, Park K W. 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries[J]. J. Ind. Eng. Chem., 2017,49:105-111. doi: 10.1016/j.jiec.2017.01.014
Jang J Y, Kang I, Choi J K, Jeong H, Yi K W, Hong J Y, Lee M. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes[J]. Angew. Chem. Int. Ed., 2020,59(34):14473-14480. doi: 10.1002/anie.202002411
Raza A, Jung J Y, Lee C H, Kim B G, Choi J H, Park M S, Lee S M. Swelling-controlled double-layered SiOx/Mg2SiO4/SiOx composite with enhanced initial coulombic efficiency for lithium-ion battery[J]. ACS Appl. Mater. Inter., 2021,13(6):7161-7170. doi: 10.1021/acsami.0c19975
Wang C, Wu H, Chen Z, McDowell M T, Cui Y, Bao Z N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nat. Chem., 2013,5(12):1042-1048. doi: 10.1038/nchem.1802
Tokur M, Jin M Y, Sheldon B W, Akbulut H. Stress bearing mechanism of reduced graphene oxide in silicon-based composite anodes for lithium ion batteries[J]. ACS Appl. Mater. Inter., 2020,12(30):33855-33869. doi: 10.1021/acsami.0c10064
Ian B, Ji W. Asymmetric membranes containing micron-size silicon for high performance lithium ion battery anode[J]. Electrochim. Acta, 2016,213:46-54. doi: 10.1016/j.electacta.2016.07.106
Shi H B, Shao G Q, Wu B B, Yang Z X, Zhang H G, Lv P P, Zhu Q S. Scalable synthesis of a dual-confined SiO/one-dimensional carbon/amorphous carbon anode based on heterogeneous carbon structure evolution[J]. J. Mater. Chem. A, 2021,9(46):26236-26247. doi: 10.1039/D1TA07821F
Chen S Y, Xu Y N, Du H B. One-step synthesis of uniformly distributed SiOx-C composites as stable anodes for lithium-ion batteries[J]. Dalton Trans., 2022,51(31):11909-11915. doi: 10.1039/D2DT01843H
Fu R S, Ji J J, Yun L, Jiang Y B, Zhang J, Zhou X F, Liu Z P. Graphene wrapped silicon suboxides anodes with suppressed Li-uptake behavior enabled superior cycling stability[J]. Energy Stor. Mater., 2021,35:317-326.
Li H, Peng J, Wu Z Y, Liu X L, Liu P, Chang B B, Wang X Y. Constructing novel SiOx hybridization materials by a double-layer interface engineering for high-performance lithium-ion batteries[J]. Chem. Eng. J., 2023,462142172. doi: 10.1016/j.cej.2023.142172
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
Shimei Wu , Yining Li , Lantao Chen , Yufei Zhang , Lingxing Zeng , Haosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
Huanyan Liu , Jiajun Long , Hua Yu , Shichao Zhang , Wenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712