Citation: Ting-Ting GUO, Yan-Yan AN, Dan ZHAO, Juan-Zhi YAN. Polyoxometalate-directing calix[4]resorcinarene-based giant [Co8] coordination cage: Self-assembly and electrochemical performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1791-1799. doi: 10.11862/CJIC.2023.143 shu

Polyoxometalate-directing calix[4]resorcinarene-based giant [Co8] coordination cage: Self-assembly and electrochemical performance

Figures(5)

  • Polyoxometalate(POM)-based supramolecular coordination cages have aroused wide interest in terms of their design and fabrication, however, it still be challenging. Herein, we report a POM-calixarene-based giant[Co8] coordination cage, [Co8(MTR4A)6Cl8](α-SiW12O40)2·30DMF·74EtOH (cage-1), assembled with six bowl-shaped calix[4]resorcinarene(MTR4A) molecules, eight Co (Ⅱ) cations, two α-SiW12O404- counter anions, and eight Cl- anions. Remarkably, α-SiW12O404- anions were sandwiched between layers via hydrogen-bonded to form a 3D supramolecular architecture. Moreover, cage-1 showed a good lithium-ion storage capacity as an anode material in lithium-ion batteries (LIBs). Furthermore, it was shown to be a highly active bifunctional electrocatalytic performance for reducing nitrite (NO2-) and oxidizing ascorbic acid (AA).
  • 加载中
    1. [1]

      Sun Y, Chen C, Liu J, Stang P J. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination[J]. Chem. Soc. Rev., 2020,49:3889-3919. doi: 10.1039/D0CS00038H

    2. [2]

      Pullen S, Clever G H. Mixed-ligand metal-organic frameworks and heteroleptic coordination cages as multifunctional scaffolds-a comparison[J]. Acc. Chem. Res., 2018,51:3052-3064. doi: 10.1021/acs.accounts.8b00415

    3. [3]

      Shi W J, Liu D, Li X, Bai S, Wang Y Y, Han Y F. Supramolecular coordination cages based on N-heterocyclic carbene-gold(Ⅰ) ligands and their precursors: Self-assembly, structural transformation, and guest-binding properties[J]. Chem. Eur. J., 2021,27(29):7853-7861. doi: 10.1002/chem.202100710

    4. [4]

      Jiang W L, Shen J C, Peng Z, Wu G Y, Yin G Q, Shi X, Yang H B. Controllable synthesis of ultrasmall Pd nanocatalysts templated by supramolecular coordination cages for highly efficient reductive dehalogenation[J]. J. Mater. Chem. A, 2020,8:12097-12105. doi: 10.1039/D0TA02725A

    5. [5]

      Fang Y, Powell J A, Li E, Wang Q, Perry Z, Kirchon A, Yang X, Xiao Z, Zhu C, Zhang L, Huang F, Zhou H C. Catalytic reactions within the cavity of coordination cages[J]. Chem. Soc. Rev., 2019,48:4707-4730. doi: 10.1039/C9CS00091G

    6. [6]

      Sánchez-González E, Tsang M Y, Troyano J, Craig G A, Furukawa S. Assembling metal-organic cages as porous materials[J]. Chem. Soc. Rev., 2022,51:4876-4889. doi: 10.1039/D1CS00759A

    7. [7]

      Schneider M L, Linder-Patton O M, Bloch W M. A covalent deprotection strategy for assembling supramolecular coordination polymers from metal-organic cages[J]. Chem. Commun., 2020,56:12969-12972. doi: 10.1039/D0CC05349J

    8. [8]

      Lin H, Xiao Z, Le K N, Yan T H, Cai P, Yang Y, Day G S, Drake H F, Xie H, Bose R, Ryan C A, Hendon C H, Zhou H C. Assembling phenothiazine into a porous coordination cage to improve its photocatalytic efficiency for organic transformations[J]. Angew. Chem. Int. Ed., 2022,61e202214055. doi: 10.1002/anie.202214055

    9. [9]

      Lorzing G R, Gosselin A J, Lindner B S, Bhattacharjee R, Yap G P A, Caratzoulasc S, Bloch E D. Design and synthesis of capped-paddlewheel-based porous coordination cages[J]. Chem. Commun., 2019,55:9527-9530. doi: 10.1039/C9CC05002G

    10. [10]

      Pei W Y, Xu G H, Yang J, Wu H, Chen B L, Zhou W, Ma J F. Versatile assembly of metal-coordinated calix[4]resorcinarene cavitands and cages through ancillary linker tuning[J]. J. Am. Chem. Soc., 2017,139:7648-7656. doi: 10.1021/jacs.7b03169

    11. [11]

      Guo T T, Cheng D M, Yang J, Xu X X, Ma J F. Calix[4]resorcinarene-based[Co16]coordination cages mediated by isomorphous auxiliary ligands for enhanced proton conduction[J]. Chem. Commun., 2019,55:6277-6280. doi: 10.1039/C9CC01828J

    12. [12]

      Wang S T, Gao X H, Hang X X, Zhu X F, Han H T, Li X K, Liao W P, Chen W. Calixarene-based {Ni18} coordination wheel: High efficient electrocatalyst for the glucose oxidation and template for the homogenous cluster fabrication[J]. J. Am. Chem. Soc., 2018,140:6271-6277. doi: 10.1021/jacs.7b13193

    13. [13]

      YAO Y F, YUAN J Y, SHEN M, DU B, XING R. Synthesis and photocatalytic performance of ZnO micro/nano materials induced by amphiphilic calixarene[J]. Chinese J. Inorg. Chem., 2022,38(2):261-273.  

    14. [14]

      Pei W Y, Yang J, Wu H, Zhou W, Yang Y W, Ma J F. A calix[4] resorcinarene-based giant coordination cage: Controlled assembly and iodine uptake[J]. Chem. Commun., 2020,56:2491-2494. doi: 10.1039/D0CC00157K

    15. [15]

      He L P, Wang S C, Lin L T, Cai J Y, Li L J, Tu T H, Chan Y T. Multicomponent metallo-supramolecular nanocapsules assembled from calix[4]resorcinarene-based terpyridine ligands[J]. J. Am. Chem. Soc., 2020,142:7134-7144. doi: 10.1021/jacs.0c01482

    16. [16]

      Guo T T, Su X F, Xu X, Yang J, Yan L, Ma J F. A calix[4]resorcinarene-based[Co12]coordination cage for highly efficient cycloaddition of CO2 to epoxides[J]. Inorg. Chem., 2019,58(24):16518-16523. doi: 10.1021/acs.inorgchem.9b02473

    17. [17]

      Pei W Y, Lu B B, Yang J, Wang T, Ma J F. Two new calix[4]resorcinarene-based coordination cages adjusted by metal ions for the Knoevenagel condensation reaction[J]. Dalton Trans., 2021,50:9942-9948. doi: 10.1039/D1DT01139A

    18. [18]

      Lee J, Brewster J T, Song B, Lynch V M, Hwang I, Li X, Sessler J L. Uranyl dication mediated photoswitching of a calix[4]pyrrole-based metal coordination cage[J]. Chem. Commun., 2018,54:9422-9425. doi: 10.1039/C8CC05160G

    19. [19]

      Kashapov R, Razuvayeva Y, Ziganshina A, Sergeeva T, Kashapova N, Sapunova A, Voloshina A, Nizameev I, Salnikov V, Zakharova L. Supramolecular assembly of calix[4]resorcinarenes and chitosan for the design of drug nanocontainers with selective effects on diseased cells[J]. New J. Chem., 2020,44:17854-17863. doi: 10.1039/D0NJ02163F

    20. [20]

      Sun K, Li H Q, Ye H J, Jiang F Q, Zhu H, Yin J. 3D-structured polyoxometalate microcrystals with enhanced rate capability and cycle stability for lithium-ion storage[J]. ACS Appl. Mater. Interfaces, 2018,10:18657-18664. doi: 10.1021/acsami.8b03071

    21. [21]

      Ilbeygi H, Kim I Y, Kim M G, Cha W, Kumar P S M, Park D H, Vinu A. Highly crystalline mesoporous phosphotungstic acid: A high performance electrode material for energy storage applications[J]. Angew. Chem. Int. Ed., 2019,58:10849-10854. doi: 10.1002/anie.201901224

    22. [22]

      Liu J H, Yu M Y, Yang J, Liu Y Y, Ma J F. Polyoxometalate-based complex/graphene for high-rate lithium-ion batteries[J]. Microporous Mesoporous Mater., 2021,310110666. doi: 10.1016/j.micromeso.2020.110666

    23. [23]

      Chen X X, Wang Z, Zhang R R, Xu L Q, Sun D. A novel polyoxometalate-based hybrid containing a 2D[CoMo8O26] structure as the anode for lithium-ion batteries[J]. Chem. Commun., 2017,53:10560-10563. doi: 10.1039/C7CC05741E

    24. [24]

      Liu W J, Yu G, Zhang M, Li R H, Dong L Z, Zhao H S, Chen Y J, Xin Z F, Li S L, Lan Y Q. Investigation of the enhanced lithium battery storage in a polyoxometalate model: from solid spheres to hollow balls[J]. Small Methods, 2018,21800154. doi: 10.1002/smtd.201800154

    25. [25]

      Wang M Y, Yuan Y Y, Qi Z Q, Chen J Y, Jiang Z G, Zhan C H. Two pseudo-T polyoxometalate-organic cages with the Td-Keggin template[J]. Chem. Mater., 2022,34:10501-10508. doi: 10.1021/acs.chemmater.2c02560

    26. [26]

      Taleghani S, Mirzaei M, Eshtiagh-Hosseini H, Frontera A. Tuning the topology of hybrid inorganic-organic materials based on the study of flexible ligands and negative charge of polyoxometalates: A crystal engineering perspective[J]. Coord. Chem. Rev., 2016,309:84-106.

    27. [27]

      Gao Y, Choudhari M, Such G K, Ritchie C. Polyoxometalates as chemically and structurally versatile components in self-assembled materials[J]. Chem. Sci., 2022,13:2510-2527.

    28. [28]

      Cameron J M, Guillemot G, Galambos T, Amin S S, Hampson E, Haidaraly K M, Newton G N, Izzet G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials[J]. Chem. Soc. Rev., 2022,51:293-328. doi: 10.1039/D1CS00832C

    29. [29]

      Centellas M S, Piot M, Salles R, Proust A, Tortech L, Brouri D, Hupin S, Abécassis B, Landy D, Bo C, Izzet G. Exploring the self-assembly of dumbbell-shaped polyoxometalate hybrids, from molecular building units to nanostructured soft materials[J]. Chem. Sci., 2020,11:11072-11080. doi: 10.1039/D0SC03243C

    30. [30]

      FU Y, LIU Y H, QU X S, LIU S P, YANG Y Y. The study of modified electrode based on Preyssler type POMs/TiO2 nanowire composite: Fabrication and electrocatalytic properties[J]. Journal of Northeast Normal University (Natural Science Edition), 2022,54:95-99.  

    31. [31]

      Liu J J, Fu J J, Liu T, Cheng F X. Photochromic polyoxometalate/naphthalenediimide hybrid structure with visible-light-driven dye degradation[J]. J. Solid State Chem., 2022,312123236. doi: 10.1016/j.jssc.2022.123236

    32. [32]

      ZHAO J, GUO Q Q, ZHENG Y G, LONG W R, TIAN H X, WANG Z Y, SHI Z Y. Synthesis, structure and electrochemical properties of a 1D chain-like Keggin-based hybrid constructed by 2,6-dimethyl-3,5-bis (pyrazole-3-yl)pyridine and copper[J]. J. Synth. Cryst., 2020,49(3):500-510. doi: 10.3969/j.issn.1000-985X.2020.03.020

    33. [33]

      TENG D, WANG Q, LI N, ZHAO H Y, HUANG R D. Synthesis and electrochemical properties of supramolecular compounds based on POMs[J]. Journal of Molecular Science, 2019,35(2):148-154. doi: 10.13563/j.cnki.jmolsci.2019.02.010

    34. [34]

      TIAN A X, LI T T, LIU J N, TIAN Y, YING J. A series of POM-based compounds constructed by mono-and mixed ligands synergetically: Structures, electrochemical and selective photocatalytic properties[J]. Scientia Sinica Chimica, 2019,49(2):319-337.  

    35. [35]

      Sun Q F, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation[J]. Science, 2010,328:1144-1147. doi: 10.1126/science.1188605

    36. [36]

      Zhai Q Y, Su J, Guo T T, Yang J, Ma J F, Chen J S. Two porous polyoxometalate-resorcin[4]arene-based supramolecular complexes: Selective adsorption of organic dyes and electrochemical properties[J]. Cryst. Growth Des., 2018,18:6046-6053. doi: 10.1021/acs.cgd.8b00891

    37. [37]

      Sheldrick G M. SHELXS-2018, Program for the crystal structure solution. University of Göttingen, Germany, 2018.

    38. [38]

      Sheldrick G M. SHELXL-2018, Program for the crystal structure refinement. University of Göttingen, Germany, 2018.

    39. [39]

      Farrugia L J. WINGX: A Windows program for crystal structure analysis. University of Glasgow: Glasgow, UK, 1988.

    40. [40]

      Spek A L. Single-crystal structure validation with the program PLATON[J]. J. Appl. Crystallogr., 2003,36:7-13. doi: 10.1107/S0021889802022112

    41. [41]

      Wang J X, Liu Y B, Sha Q, Cao D W, Hu H B, Shen T Y, He L, Song Y F. Electronic structure reconfiguration of self-supported polyoxometalate-based lithium-ion battery anodes for efficient lithium storage[J]. ACS Appl. Mater. Interfaces, 2022,14(1):1169-1176. doi: 10.1021/acsami.1c21461

    42. [42]

      Yang X L, Ye Y S, Wang Z M, Zhang Z H, Zhao Y L, Yang F, Zhu Z Y, Wei T. POM-based MOF-derived Co3O4/CoMoO4 nanohybrids as anodes for high-performance lithium-ion batteries[J]. ACS Omega, 2020,5(40):26230-26236. doi: 10.1021/acsomega.0c03929

    43. [43]

      Yu M Y, Liu J H, Yang J, Ma J F. A family of polyoxometalate-resorcin[4]arene-based metal-organic materials: Assemblies, structures and lithium ion battery properties[J]. J. Alloy. Compd., 2021,868(5)159009.

    44. [44]

      Ge D H, Peng J, Qu G L, Geng H B, Deng Y Y, Wu J J, Cao X Q, Zheng J W, Gu H W. Nanostructured Co(Ⅱ)-based MOFs as promising anodes for advanced lithium storage[J]. New J. Chem., 2016,40:9238-9244. doi: 10.1039/C6NJ02568D

    45. [45]

      Dong C F, Xu L Q. Cobalt-and cadmium-based metal-organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries[J]. ACS Appl. Mater. Interfaces, 2017,9:7160-7168. doi: 10.1021/acsami.6b15757

    46. [46]

      Liu J H, Shen Q T, Yang J, Yu M Y, Ma J F. Polyoxometalate-templated cobalt-resorcin[4]arene frameworks: Tunable structure and lithium-ion battery performance[J]. Inorg. Chem., 2021,60:3729-3740. doi: 10.1021/acs.inorgchem.0c03511

    47. [47]

      Song Y D, Yu L, Gao Y R, Shi C D, Cheng M L, Wang X M, Liu H J, Liu Q. One-dimensional zinc-based coordination polymer as a higher capacity anode material for lithium ion batteries[J]. Inorg. Chem., 2017,56(19):11603-11609. doi: 10.1021/acs.inorgchem.7b01441

    48. [48]

      Huang Q, Wei T, Zhang M, Dong L Z, Zhang A M, Li S L, Liu W J, Liu J, Lan Y Q. A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing lithium ion battery performance[J]. J. Mater. Chem. A, 2017,5:8477-8483. doi: 10.1039/C7TA00900C

    49. [49]

      Wang Z H, Wang X F, Tan Z, Song X Z. Polyoxometalate/metal-organic framework hybrids and their derivatives for hydrogen and oxygen evolution electrocatalysis[J]. Mater. Today, 2021,19100618.

    50. [50]

      Zeb Z, Huang Y C, Chen L L, Zhou W B, Liao M H, Jiang Y Y, Li H T, Wang L M, Wang L, Wang H, Wei T, Zang D J, Fan Z J, Wei Y G. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction[J]. Chem. Soc. Rev., 2023,482215058.

    51. [51]

      Fabre B, Falaise C, Cadot E. Polyoxometalates-functionalized electrodes for (photo)electrocatalytic applications: Recent advances and prospects[J]. ACS Catal., 2022,12(19):12055-12091. doi: 10.1021/acscatal.2c01847

    52. [52]

      WANG Y, XIE Y Q, WANG H, HUANG Z, KE D G, CHEN W Z, WU P F, XIAO Z C. Electrochemical studies of tris(alkoxo)-derived hexavanadate[J]. Journal of Analytical Science, 2019,35(5):577-581. doi: 10.13526/j.issn.1006-6144.2019.05.009

    53. [53]

      ZHOU X, YE J, WANG Z H, JIN S R. Two inorganic-organic hybrid crystals based on polyoxometallates and imidazole compounds: Syntheses and properties[J]. Chinese J. Inorg. Chem., 2019,35(1):43-47.  

    54. [54]

      Sadakane M, Steckhan E. Electrochemical properties of polyoxometalates as electrocatalysts[J]. Chem. Rev., 1998,98:219-238. doi: 10.1021/cr960403a

    55. [55]

      Gao G G, Xu L, Wang W J, Qu X S, Liu H, Yang Y Y. Cobalt(Ⅱ)/nickel(Ⅱ)-centered keggin-type heteropolymolybdates: Syntheses, crystal structures, magnetic and electrochemical properties[J]. Inorg. Chem., 2008,47:2325-2333. doi: 10.1021/ic700797v

    56. [56]

      Antonio M R, Chiang M H. Stabilization of plutonium(Ⅲ) in the Preyssler polyoxometalate[J]. Inorg. Chem., 2008,47:8278-8285. doi: 10.1021/ic8008893

    57. [57]

      Zhou W L, Zheng Y P, Yuan G, Peng J. Three polyoxometalates-based organic-inorganic hybrids decorated with Cu-terpyridine complexes exhibiting dual functional electro-catalytic behaviors[J]. Dalton Trans., 2019,48:2598-2605. doi: 10.1039/C8DT04945A

    58. [58]

      Keita B, Belhouari A, Nadjo L, Contant R. Electrocatalysis by polyoxometalate/vbpolymer systems: Reduction of nitrite and nitric oxide[J]. J. Electroanal. Chem., 1995,381:243-250. doi: 10.1016/0022-0728(94)03710-K

  • 加载中
    1. [1]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    2. [2]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    7. [7]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    8. [8]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    9. [9]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    10. [10]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    11. [11]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    12. [12]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    13. [13]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    14. [14]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    15. [15]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    16. [16]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    17. [17]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    18. [18]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    19. [19]

      Jia-Ru LiNing LiLi-Ling HeJun He . Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole. Chinese Chemical Letters, 2025, 36(1): 109934-. doi: 10.1016/j.cclet.2024.109934

    20. [20]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

Metrics
  • PDF Downloads(1)
  • Abstract views(1327)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return