Citation: Bo-Wen MA, Jia-Wei LI, Meng WANG, Yu-Heng LI, Ming LI, Chuan-Jun YUAN. Synthesis of terbium fluorescent nanocomplexes and their applications in the development of latent bloody fingerprints[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1673-1681. doi: 10.11862/CJIC.2023.141 shu

Synthesis of terbium fluorescent nanocomplexes and their applications in the development of latent bloody fingerprints

Figures(10)

  • Carboxyl functionalized terbium fluorescent nanocomplex was chemically synthesized by a one-step process using terbium ion as the luminescence center, p-phthalic acid as the first ligand, and phenanthroline as the second ligand. The carboxyl groups on the surface of these nanocomplexes were further activated using 1-(3-dimethyl-amino-propyl)-3-ethylcarbodiimine hydrochloride as the activator combined with N-hydroxy succinimide as the stabilizer. Due to the rapid and mild amide reaction between the activated carboxyl groups on the surface of the nano-complexes and the amino groups in bloody fingerprint residuals, the resulting nanocomplexes were finally used as fluorescent probes for the targeted development of latent bloody fingerprints. Excited with 254 nm ultraviolet light, the papillary ridges could emit strong green fluorescence, which could give a sufficient contrast between the developing signal and the background noise; the papillary ridges were coherent, the minutiae were sharp, and the sweat pores were distinct; the contrast between the ridges and the furrows were obvious. The parameters for fingerprint development were optimized, namely, the mass ratio of nanocomplex to water in suspension was recommended to be 1:35, and the period for staining was recommended to be 20 s. In addition, the contrast, sensitivity, selectivity, and applicability in fingerprint development were also investigated in detail. Experimental results show that the activated carboxyl functionalized terbium fluorescent nanocomplexes are suitable for developing the latent bloody fingerprints on smooth non- and semi-porous surfaces with high quality and high efficiency.
  • 加载中
    1. [1]

      WANG M, LI M, YUAN C J. Frontiers in fingerprint development. Shenyang: Northeastern University Press, 2019: 23-24

    2. [2]

      LI D Z, ZHANG Z L, LIU L. Fluorescence development of blood fingerprint[J]. Spectrosc. Spectr. Anal., 2001,21(5):676-679. doi: 10.3321/j.issn:1000-0593.2001.05.030

    3. [3]

      Wang Y Q, Wang J, Ma Q Q, Li Z H, Yuan Q. Recent progress in background-free latent fingerprint imaging[J]. Nano Res., 2018,11(10):5499-5518. doi: 10.1007/s12274-018-2073-1

    4. [4]

      Wang M, Li M, Yu A Y, Yang M Y, Mao C B. Fluorescent nanomaterials for the development of latent fingerprints in forensic sciences[J]. Adv. Funct. Mater., 2017,27(14)1606243. doi: 10.1002/adfm.201606243

    5. [5]

      WANG M, JU J S, ZHU Z X, SHEN D P, LI M, YUAN C J, WU J. Recent progress in nanomaterial-based fluorescent development of latent fingerprints[J]. Sci. Sin. Chim., 2019,49(12):1425-1441.  

    6. [6]

      LI M, NI L, WANG M, ZHU Z X, YUAN C J, WU J. Research progress on evaluating the effects of nanomaterial-based development of latent fingerprints[J]. Spectrosc. Spectr. Anal., 2021,41(9):2670-2680.  

    7. [7]

      SHI Z X, WANG Y F, LIU J J, YANG R Q, ZUO S L, YU Y C. Water-soluble fluorescent CdSe quantum dots: synthesis and application for fingerprint developing[J]. Chinese J. Inorg. Chem., 2008,24(7):1186-1190. doi: 10.3321/j.issn:1001-4861.2008.07.035

    8. [8]

      YANG R Q, ZHOU Q Y, WANG Y F, JIN Y J. Nano meter CdS/PAMAM G5.0 for developing oil latent fingerprints on adhesive side of common tapes[J]. Chinese J. Inorg. Chem., 2008,24(11):1874-1879.  

    9. [9]

      Xu L R, Zhang C Z, He Y Y, Su B. Advances in the development and component recognition of latent fingerprints[J]. Sci. China Chem., 2015,58(7):1090-1096. doi: 10.1007/s11426-014-5294-5

    10. [10]

      Su B. Recent progress on fingerprint visualization and analysis by imaging ridge residue components[J]. Anal. Bioanal. Chem., 2016,408(11):2781-2791. doi: 10.1007/s00216-015-9216-y

    11. [11]

      Becue A, Moret S, Champod C, Margot P. Use of quantum dots in aqueous solution to detect blood fingermarks on non-porous surfaces[J]. Forensic Sci. Int., 2009,191(1/2/3):36-41.

    12. [12]

      WANG K, YANG R Q, XIA B B, XIONG H. Water-soluble fluorescent Zn xCd1-xSe quantum dots: Synthesis and application for bloody fingerprint development[J]. Materials Reports, 2010,24(12):21-24.  

    13. [13]

      Moret S, Becue A, Champod C. Cadmium-free quantum dots in aqueous solution: Potential for fingermark detection, synthesis and an application to the detection of fingermarks in blood on nonporous surfaces[J]. Forensic Sci. Int., 2013,224(1/2/3):101-110.

    14. [14]

      Li B Y, Zhang X L, Zhang L Y, Wang T T, Li L, Wang C G, Su Z M. NIR-responsive NaYF4:Yb, Er, Gd fluorescent upconversion nanorods for the highly sensitive detection of blood fingerprints[J]. Dyes Pigment., 2016,134:178-185. doi: 10.1016/j.dyepig.2016.07.014

    15. [15]

      ZHU Z X, WANG M, LI M, YUAN C J, WU J. Europium nanocomplex for development of latent fingerprints based on carboxyl activation mechanism[J]. Chin. J. Anal. Chem., 2021,49(2):237-245.  

    16. [16]

      WANG M. Synthesis of LaPO4: Ce, Tb fluorescent nanopowders and their applications in nondestructive development of latent fingerprints[J]. Spectrosc. Spectr. Anal., 2016,36(5):1412-1417.  

    17. [17]

      Peng D, Wu X, Liu X, Huang M J, Wang D, Liu R L. Color-tunable binuclear (Eu, Tb) nanocomposite powder for the enhanced development of latent fingerprints based on electrostatic interactions[J]. ACS Appl. Mater. Interfaces, 2018,10(38):32859-32866. doi: 10.1021/acsami.8b10371

    18. [18]

      Wang M, Li M, Yang M Y, Zhang X M, Yu A Y, Zhu Y, Qiu P H, Mao C B. NIR-induced highly sensitive detection of latent fingermarks by NaYF4:Yb, Er upconversion nanoparticles in a dry powder state[J]. Nano Res., 2015,8(6):1800-1810. doi: 10.1007/s12274-014-0686-6

    19. [19]

      Wang M, Li M, Yu A Y, Wu J, Mao C B. Rare earth fluorescent nanomaterials for enhanced development of latent fingerprints[J]. ACS Appl. Mater. Interfaces, 2015,7(51):28110-28115.

    20. [20]

      Wang M, Zhu Y, Mao C B. Synthesis of NIR-responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles using an optimized solvo-thermal method and their applications in enhanced development of latent fingerprints on various smooth substrates[J]. Langmuir, 2015,31(25):7084-7090.

    21. [21]

      Gao F, Han J X, Zhang J, Li Q, Sun X F, Zheng J C, Bao L R, Li X, Liu Z L. The synthesis of newly modified CdTe quantum dots and their application for improvement of latent fingerprint detection[J]. Nanotechnology, 2011,22(7)075705.

    22. [22]

      Moret S, Becue A, Champod C. Nanoparticles for fingermark detection: An insight into the reaction mechanism[J]. Nanotechnology, 2014,25(42)425502.

    23. [23]

      Wang J, Ma Q Q, Liu H Y, Wang Y Q, Shen H J, Hu X X, Ma C, Yuan Q, Tan W H. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition[J]. Anal. Chem., 2017,89(23):12764-12770.

  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    7. [7]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    8. [8]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    9. [9]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    14. [14]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    18. [18]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

Metrics
  • PDF Downloads(0)
  • Abstract views(1105)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return