Citation: Yi-Cai YU, Hai-Ling WANG, Li-Li LI, Cheng HE. Anthraquinone-based metal-organic cages as efficient photocatalysts for oxidation reactions[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1649-1660. doi: 10.11862/CJIC.2023.139 shu

Anthraquinone-based metal-organic cages as efficient photocatalysts for oxidation reactions

  • Corresponding author: Cheng HE, hecheng@dlut.edu.cn
  • Received Date: 4 April 2023
    Revised Date: 5 June 2023

Figures(9)

  • Anthraquinone-based metal-organic cages 1-Zn, 2-Zn and 2-Fe were constructed from ligands L1 and L2 (L1=N2, N7-di((2, 2'-bipyridin)-5-yl)-9, 10-dioxo-9, 10-dihydroanthracene-2, 7-dicarboxamide, L2=N2, N7-bis(4-((2, 2'-bipyridin)-5-yl) phenyl)-9, 10-dioxo-9, 10-dihydroanthracene-2, 7-dicarboxamide) with Zn(Ⅱ) and Fe(Ⅱ) by coordination self-assembly. Single crystal X-ray diffraction and electrospray mass spectrometry showed that this series of complexes were M2L3-type metal-organic structures. The 1-Zn and 2-Zn supramolecular systems were successfully applied to explore the oxidation of toluene into benzaldehyde, and the experiments suggested that the formation of supramolecular host-guest compounds between anthraquinone-based metal-organic cages and toluene was the key to effective oxidation of toluene. The photooxidation performance of 1-Zn and 2-Zn was further investigated by the photooxidation reaction of aromatic alcohols, and the results indicated that the catalytic yields are affected by the electronic effects of the substituents and the size of the substrate molecules.
  • 加载中
    1. [1]

      Brown C J, Toste F D, Bergman R G, Raymond K N. Supramolecular catalysis in metal-ligand cluster hosts[J]. Chem. Rev., 2015,115(9):3012-3035. doi: 10.1021/cr4001226

    2. [2]

      Yan K, Fujita M. A speedy marriage in supramolecular catalysis[J]. Science, 2015,350(6265):1165-1166. doi: 10.1126/science.aad7245

    3. [3]

      Hooley R J. Taking on the turnover challenge[J]. Nat. Chem., 2016,8(3):202-204. doi: 10.1038/nchem.2461

    4. [4]

      YANG L L, JING X, HE C, DUAN C Y. Photocatalytic hydrogen production based on cobalt-thiosemicarbazone complex with the xanthene dye moiety[J]. Chinese J. Inorg. Chem., 2017,33(6):913-922.  

    5. [5]

      Kaphan D M, Levin M D, Bergman R G, Toste F D. A supramolecular microenvironment strategy for transition metal catalysis[J]. Science., 2015,350(6265):1235-1238. doi: 10.1126/science.aad3087

    6. [6]

      ZHAO L, CHU S S, CAI J K, WEI J W, LI Y N, DUAN C Y. Metal-organic triangles with NADH mimics for photocatalytic hydrogen production[J]. Chinese J. Inorg. Chem., 2021,37(5):769-777.  

    7. [7]

      Sun Q F, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation[J]. Science, 2010,328(5982):1144-1147. doi: 10.1126/science.1188605

    8. [8]

      Zhou X P, Wu Y, Li D. Polyhedral metal-imidazolate cages: control of self-assembly and cage to cage transformation[J]. J. Am. Chem. Soc., 2013,135(43):16062-16065. doi: 10.1021/ja4092984

    9. [9]

      Cook T R, Stang P J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination[J]. Chem. Rev., 2015,115(15):7001-7045. doi: 10.1021/cr5005666

    10. [10]

      Hong C M, Bergman R G, Raymond K N, Toste F D. Self-assembled tetrahedral hosts as supramolecular catalysts[J]. Acc. Chem. Res., 2018,51(10):2447-2455. doi: 10.1021/acs.accounts.8b00328

    11. [11]

      Zhang D, Ronson T K, Nitschke J R. Functional capsules via subcomponent self-assembly[J]. Acc. Chem. Res., 2018,51(10):2423-2436. doi: 10.1021/acs.accounts.8b00303

    12. [12]

      Purba P C, Maity M, Bhattacharyya S, Mukherjee P S. A self-assembled palladium(Ⅱ) barrel for binding of fullerenes and photosensitization ability of the fullerene-encapsulated barrel[J]. Angew. Chem. Int. Ed., 2021,133(25):14228-14235. doi: 10.1002/ange.202103822

    13. [13]

      Yoshizawa M, Klosterman J K, Fujita M. Functional molecular flasks: New properties and reactions within discrete, self-assembled hosts[J]. Angew. Chem. Int. Ed., 2009,48(19):3418-3438. doi: 10.1002/anie.200805340

    14. [14]

      Gaeta C, Manna P L, Rosa M D, Soriente A, Talotta C, Neri P. Supramolecular catalysis with self-assembled capsules and cages: What happens in confined spaces[J]. ChemCatChem, 2021,13(7):1638-1658. doi: 10.1002/cctc.202001570

    15. [15]

      Liu W, Stoddart J F. Emergent behavior in nanoconfined molecular containers[J]. Chem, 2021,7(4):919-947. doi: 10.1016/j.chempr.2021.02.016

    16. [16]

      Li H C, Li M F, He C, DUAN C Y. Construction of a noble-metal-free nickel metal-organic macrocycle for photocatalytic hydrogen production[J]. Chinese J. Inorg. Chem., 2018,34(1):11-19.  

    17. [17]

      Zhang D W, Ronson T K, Zou Y Q, Nitschke J R. Metal-organic cages for molecular separations[J]. Nat. Rev. Chem., 2021,5(3):168-182. doi: 10.1038/s41570-020-00246-1

    18. [18]

      Zhu C Y, Pan M, Su C Y. Metal-organic cages for biomedical applications[J]. Isr. J. Chem., 2019,59(3/4):209-219.

    19. [19]

      Samanta S K, Isaacs L. Biomedical applications of metal organic polygons and polyhedra (MOPs)[J]. Coord. Chem. Rev., 2020,410213181. doi: 10.1016/j.ccr.2020.213181

    20. [20]

      Breiner B, Clegg J K, Nitschke J R. Reactivity modulation in container molecules[J]. Chem. Sci., 2011,2(1):51-56. doi: 10.1039/C0SC00329H

    21. [21]

      Galan A, Ballester P. Stabilization of reactive species by supramolecular encapsulation[J]. Chem. Soc. Rev., 2016,45(6):1720-1737. doi: 10.1039/C5CS00861A

    22. [22]

      Ronson T K, Meng W, Nitschke J R. Design principles for the optimization of guest binding in aromatic-paneled Fe4L6 cages[J]. J. Am. Chem. Soc., 2017,139(28):9698-9707. doi: 10.1021/jacs.7b05202

    23. [23]

      Leenders S H, Gramage D R, Bruin B D, Reek J N H. Transition metal catalysis in confined spaces[J]. Chem. Soc. Rev., 2015,44(2):433-448. doi: 10.1039/C4CS00192C

    24. [24]

      Zhao L, Jing X, Li X Z, Guo X Y, Zeng L, He C, Duan C Y. Catalytic properties of chemical transformation within the confined pockets of Werner-type capsules[J]. Coord. Chem. Rev., 2019,378:151-187. doi: 10.1016/j.ccr.2017.11.005

    25. [25]

      Yang B, Fu Z H, Su A Q, She J L, Chen M K, Tang S P, Hu W W, Zang C, Liu Y C. Influence of tetraalkylammonium cations on quality of decatungstate and its photocatalytic property in visible light-triggered selective oxidation of organic compounds by dioxygens[J]. Appl. Catal. B Environ., 2019,242:249-257. doi: 10.1016/j.apcatb.2018.09.099

    26. [26]

      Tang S P, Wu W F, Fu Z H, Zou S, Liu T C, Zhao H H, Kirk S R, Yin D L. Vanadium-substituted tungstophosphoric acids as efficient catalysts for visible-light-driven oxygenation of cyclohexane by dioxygen[J]. ChemCatChem, 2015,7(17):2637-2645. doi: 10.1002/cctc.201500314

    27. [27]

      Ji X C, Tan M, Fu M Y, Fu M, Deng G J, Huan H W. Photocatalytic aerobic alpha-thiolation/annulation of carbonyls with mercaptobenzimidazoles[J]. Org. Biomol. Chem., 2019,17(20):4979-4983. doi: 10.1039/C9OB00625G

    28. [28]

      Wang Z Z, Ji X C, Zhao J W, Huan H W. Visible-light-mediated photoredox decarbonylative Minisci-type alkylation with aldehydes under ambient air conditions[J]. Green Chem., 2019,21(2):5512-5516.

    29. [29]

      Jiang D B, Zhang Q, Yang L, Deng Y E, Yang B, Liu Y C, Zhang C, Fu Z H. Regulating effects of anthraquinone substituents and additives in photo-catalytic oxygenation of p-xylene by molecular oxygen under visible light irradiation[J]. Renew. Energy, 2021,174:928-938. doi: 10.1016/j.renene.2021.04.100

    30. [30]

      Kern M, Simon J. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria[J]. Biochim. Biophys. Acta-Bioenerg., 2009,1787(6):646-656. doi: 10.1016/j.bbabio.2008.12.010

    31. [31]

      Sladic D, Gasic M J. Reactivity and biological activity of the marine sesquiterpene hydroquinone avarol and related compounds from sponges of the order Dictyoceratida[J]. Molecules, 2006,11(1):1-33. doi: 10.3390/11010001

    32. [32]

      Lee C H, Guo J C, Chen L X, Mandal B K. Novel zinc phthalocyanine-benzoquinone rigid dyad and its photoinduced electron transfer properties[J]. J. Org. Chem., 2008,73(21):8219-8227. doi: 10.1021/jo801293s

    33. [33]

      Zhou M J, Zhang L, Liu G X, Xu C, Huang Z. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/ cobalt dual catalysis[J]. J. Am. Chem. Soc., 2021,143(40):16470-16485. doi: 10.1021/jacs.1c05479

    34. [34]

      Hao H, Li X, Lang X. Anthraquinones as photoredox active ligands of TiO2 for selective aerobic oxidation of organic sulfides[J]. Appl. Catal. B-Environ., 2019,259118038. doi: 10.1016/j.apcatb.2019.118038

    35. [35]

      González C J, Vosburg D A, Mora Rodriguez S E, Rodriguez S E M, Vázquez M A, Zepeda L G, Gómez C V, Rivera S L. Anthraquinones: Versatile organic photocatalysts[J]. ChemCatChem, 2020,12(15):3811-3827. doi: 10.1002/cctc.202000376

    36. [36]

      Akpinar H, Schlueter J A, Allão Cassaro R A, Friedman J R, Lahti P M. Rigid core anthracene and anthraquinone linked nitronyl and iminoyl nitroxide biradicals[J]. Cryst. Growth Des., 2016,16(7):4051-4059. doi: 10.1021/acs.cgd.6b00588

    37. [37]

      Gupta G, Iqbal P, Yin F, Liu J, Palmer R E, Sharma S, Leung C F, Mendes P M. Pt diffusion dynamics for the formation Cr-Pt core-shell nanoparticles[J]. Langmuir, 2015,31(24):6917-6923. doi: 10.1021/acs.langmuir.5b01410

    38. [38]

      Mahata K, Frischmann P D, Würthner F. Giant electroactive M4L6 tetrahedral host self-assembled with Fe(Ⅱ) vertices and perylene bisimide dye edges[J]. J. Am. Chem. Soc., 2013,135(41):15656-15661. doi: 10.1021/ja4083039

    39. [39]

      Li X H, Chen J S, Wang X C, Sun J H, Antonietti M. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: Functional dyads for selective oxidation of saturated hydrocarbons[J]. J. Am. Chem. Soc., 2011,133(21):8074-8077. doi: 10.1021/ja200997a

    40. [40]

      Cosemans I, Hontis L, Den B D V, Palmaerts A, Wouters J, Cleij T J, Lutsen L, Maes W, Junkers T, Vanderzande D J M. Discovery of an anionic polymerization mechanism for high molecular weight PPV derivatives via the sulfinyl precursor route[J]. Macromolecules, 2011,44(19):7610-7616. doi: 10.1021/ma201453s

    41. [41]

      Rineh A, Dolla N K, Ball A R, Magana M, Bremner J B, Hamblin M R, Tegos G P, Kelso M J. Attaching the NorA efflux pump inhibitor INF55 to methylene blue enhances antimicrobial photodynamic inactivation of methicillin-resistant Staphylococcus aureus in vitro and in vivo[J]. ACS Infect. Dis., 2017,3(10):756-766. doi: 10.1021/acsinfecdis.7b00095

    42. [42]

      Li Y M, Rizvi S A-E-A, Hu D Q, Sun D W, Gao A H, Li J, Jiang X P. Selective late-stage oxygenation of sulfides with ground-state oxygen by uranyl photocatalysis[J]. Angew. Chem. Int. Ed., 2019,58(38):13499-13506. doi: 10.1002/anie.201906080

  • 加载中
    1. [1]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    2. [2]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    3. [3]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    4. [4]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    5. [5]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    6. [6]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    7. [7]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    10. [10]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    11. [11]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    12. [12]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    13. [13]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    14. [14]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    17. [17]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    18. [18]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    19. [19]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    20. [20]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

Metrics
  • PDF Downloads(6)
  • Abstract views(466)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return