Citation: Sha-Sha FU, Qing-Quan XiAO, Yun-Mei YAO, Meng-Zheng ZOU, Hua-Zhu TANG, Jian-Feng YE, Quan XIE. First principles study of the effect of nitrogen defects on the electronic structure and optical property of GaN/g-C3N4 heterojunction[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1721-1728. doi: 10.11862/CJIC.2023.134 shu

First principles study of the effect of nitrogen defects on the electronic structure and optical property of GaN/g-C3N4 heterojunction

  • Corresponding author: Qing-Quan XiAO, qqxiao@gzu.edu.cn
  • Received Date: 22 February 2023
    Revised Date: 16 June 2023

Figures(9)

  • The stability, electronic structure, work function, and optical properties of monolayer GaN, g-C3N4, GaN/g-C3N4 heterojunctions and three nitrogen-deficient GaN/g-C3N4-VXN (X=1, 2, 3) heterojunctions were investigated based on the first-principles plane wave super-soft pseudopotential method under density generalized theory. The calculated results show that the lattice mismatch rate of the GaN/g-C3N4 heterojunction is extremely low (0.8%) and is a complete co-lattice. Compared with monolayer g-C3N4, the conduction bands of the GaN/g-C3N4 and GaN/g-C3N4-VXN (X=1, 2, 3) heterojunctions are shifted in the low-energy direction and the valence bands are shifted upward, which leads to the reduction of the band gap, and the density of states all show orbital hybridization. The GaN/g-C3N4 and GaN/g-C3N4-VXN (X=1, 2, 3) heterojunctions all form a potential difference at the interface, forming the built-in electric fields from the g-C3N4 layer to the GaN layer. The GaN/g-C3N4-V1N heterojunction has the largest interfacial potential difference and the most obvious red-shift phenomenon, indicating that the GaN/g-C3N4-V1N heterojunction has the best optical performance compared to the other two N-defective heterojunctions. The introduction of nitrogen vacancies improves the light absorption ability of GaN/g-C3N4 heterojunction in the infrared region to different degrees.
  • 加载中
    1. [1]

      Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009,8(1):76-80. doi: 10.1038/nmat2317

    2. [2]

      Coroş M, Pogăcean F, Măgeruşan L, Socaci C, Pruneanu S. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019,13(1):23-32. doi: 10.1007/s11706-019-0452-5

    3. [3]

      Chen H Y, Zhang S H, Jiang W, Zhang C X, Guo H, Liu Z, Wang Z M, Liu F, Niu X B. Prediction of two-dimensional nodal-line semimetals in a carbon nitride covalent network[J]. J. Mater. Chem. A, 2018,6(24):11252-11259. doi: 10.1039/C8TA02555J

    4. [4]

      Wen J Q, Xie J, Chen X B, Li X. A review on g-C3N4-based photocatalysts[J]. Appl. Surf. Sci., 2017,391:72-123. doi: 10.1016/j.apsusc.2016.07.030

    5. [5]

      Cao S W, Yu J G. g-C3N4-based photocatalysts for hydrogen generation[J]. J. Phys. Chem. Lett., 2014,5(12):2101-2107. doi: 10.1021/jz500546b

    6. [6]

      Reddy K R, Reddy C V, Nadagouda M N, Shetti N P, Jaesool S, Aminabhavi T M. Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: Synthesis methods, properties and photocatalytic applications[J]. J. Environ. Manage., 2019,238:25-40. doi: 10.1016/j.jenvman.2019.02.075

    7. [7]

      Chen J J, Mao Z Y, Zhang L X, Wang D J, Xu R, Bie L J, Fahlman B D. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes[J]. ACS Nano, 2017,11(12):12650-12657. doi: 10.1021/acsnano.7b07116

    8. [8]

      Li J Y, Cui W, Sun Y J, Chu Y H, Cen W L, Dong F. Directional electron delivery via a vertical channel between g-C3N4 layers promotes photocatalytic efficiency[J]. J. Mater. Chem. A, 2017,5(19):9358-9364. doi: 10.1039/C7TA02183F

    9. [9]

      Jia L, Cheng X X, Wang X N, Cai H, He P, Ma J Y, Li L L, Ding Y, Fan X X. Large-scale preparation of g-C3N4 porous nanotubes with enhanced photocatalytic activity by using salicylic acid and melamine[J]. Ind. Eng. Chem. Res., 2019,59(3):1065-1072.

    10. [10]

      Ansari S A, Cho M H. Simple and large scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications[J]. Sci. Rep., 2017,7(1)43055. doi: 10.1038/srep43055

    11. [11]

      Su F, Mathew S C, Lipner G, Fu X, Antonietti M, Blechert S, Wang X. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light[J]. J. Am. Chem. Soc., 2010,132(46):16299-16301. doi: 10.1021/ja102866p

    12. [12]

      Pearton S, Ren F, Zhang A P, Dang G, Cao X A, Lee K P, Cho H, Gila B P, Johnson J W, Monier C. GaN electronics for high power, high temperature applications[J]. Mater. Sci. Eng. B, 2001,82(1):227-231.

    13. [13]

      Zhang A, Ren F, Anderson T, Abernathy C, Singh R, Holloway P, Pearton S, Palmer D, McGuire G. High-power GaN electronic devices[J]. Crit. Rev. Solid State Mat. Sci., 2002,27(1):1-71. doi: 10.1080/20014091104206

    14. [14]

      Kuramoto M, Kobayashi S, Akagi T, Tazawa K, Tanaka K, Saito T, Takeuchi T. High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser[J]. Appl. Phys. Express, 2018,11(11)112101. doi: 10.7567/APEX.11.112101

    15. [15]

      Takeuchi T, Kamiyama S, Iwaya M, Akasaki I. GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors[J]. Rep. Prog. Phys., 2018,82(1)012502.

    16. [16]

      Zhao C, Alfaraj N, Subedi R C, Liang J W, Alatawi A, Alhamoud A, Ebaid M, Alias M S, Ng T K, Ooi B S. Ⅲ-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications[J]. Rep. Prog. Phys., 2018,61:1-31.

    17. [17]

      Shu H B, Zhao M L, Sun M L. Theoretical study of GaN/BP van der Waals nanocomposites with strain-enhanced electronic and optical properties for optoelectronic applications[J]. ACS Appl. Nano Mater., 2019,2(10):6482-6491. doi: 10.1021/acsanm.9b01422

    18. [18]

      Chen Y X, Liu K L, Liu J X, Lv T R, Wei B, Zhang T, Zeng M Q, Wang Z C, Fu L. Growth of 2D GaN single crystals on liquid metals[J]. J. Am. Chem. Soc., 2018,140(48):16392-16395. doi: 10.1021/jacs.8b08351

    19. [19]

      Bernardi M, Ataca C, Palummo M, Grossman J C. Optical and electronic properties of two-dimensional layered materials[J]. Nanophotonics, 2017,6(2):479-493. doi: 10.1515/nanoph-2015-0030

    20. [20]

      Prete M S, Mosca Conte A, Gori P, Bechstedt F, Pulci O. Tunable electronic properties of two-dimensional nitrides for light harvesting heterostructures[J]. Appl. Phys. Lett., 2017,110(1)012103. doi: 10.1063/1.4973753

    21. [21]

      Shu H B, Niu X H, Ding X J, Wang Y. Effects of strain and surface modification on stability, electronic and optical properties of GaN monolayer[J]. Appl. Surf. Sci., 2019,479:475-481. doi: 10.1016/j.apsusc.2019.02.171

    22. [22]

      Sarkar K, Kumar P. Activated hybrid g-C3N4/porous GaN heterojunction for tunable self-powered and broadband photodetection[J]. Appl. Surf. Sci., 2021,566150695. doi: 10.1016/j.apsusc.2021.150695

    23. [23]

      Reddeppa M, KimPhung N T, Murali G, Pasupuleti K S, Park B G, In I, Kim M D. Interaction activated interfacial charge transfer in 2D g-C3N4/GaN nanorods heterostructure for self-powered UV photodetector and room temperature NO2 gas sensor at ppb level[J]. Sens. Actuator B-Chem., 2021,329129175. doi: 10.1016/j.snb.2020.129175

    24. [24]

      LIU C X, PANG G W, PAN D Q, SHI L Q, ZHANG L L, LEI B C, ZHAO X C, HUANG Y N. First-principles study of influence of electric field on electronic structure and optical properties of GaN/g-C3N4 heterojunction[J]. Acta Phys. Sin., 2022,71(9)097301.  

    25. [25]

      Ma Z L, Xu L, Dong K J, Chen T, Xiong S X, Peng B J, Zeng J, Tang S H, Li H T, Huang X. GaN/Surface-modified graphitic carbon nitride heterojunction: Promising photocatalytic hydrogen evolution materials[J]. Int. J. Hydrog. Energy, 2022,47(11):7202-7213. doi: 10.1016/j.ijhydene.2021.12.077

    26. [26]

      Trang N H, Ha T T V, Viet N M, Phuong N M. Synthesis, characterization, and photocatalytic activity of g-C3N4/GaN-ZnO composite[J]. J. Nanomater., 2021,2021:1-9.

    27. [27]

      Wang X Y, Rong X J, Zhang Y, Luo F, Qiu B, Wang J, Lin Z Y. Homogeneous photoelectrochemical aptasensors for tetracycline based on sulfur-doped g-C3N4/n-GaN heterostructures formed through self-assembly[J]. Anal. Chem., 2022,94(8):3735-3742. doi: 10.1021/acs.analchem.2c00118

    28. [28]

      Li Y H, Ren Z T, He Z J, Ouyang P, Duan Y Y, Zhang W D, Lv K, Dong F. Crystallinity-defect matching relationship of g-C3N4: Experimental and theoretical perspectives[J]. Green Energy Environ., 2023. doi: 10.1016/j.gee.2023.02.012

    29. [29]

      Patnaik S, Sahoo D P, Parida K. Recent advances in anion doped g-C3N4 photocatalysts: A review[J]. Carbon, 2021,172:682-711. doi: 10.1016/j.carbon.2020.10.073

    30. [30]

      Wang X H, He M L, Nan Z D. Effects of adsorption capacity and activity site on Fenton-like catalytic performance for Na and Fe co-doped g-C3N4[J]. Sep. Purif. Technol., 2021,256117765. doi: 10.1016/j.seppur.2020.117765

    31. [31]

      DAI S L, LIANG Y C, MA J J. First principles study on Mg2Ge doping with transition metal elements Sc, Cr, and Mn[J]. Chinese J. Inorg. Chem., 2022,38(4):637-644.  

    32. [32]

      CHENG Y H, MA X G, HANG C Y, LIAO J J, DUAN W Y. First-principles study of adsorption and diffusion behaviors of Li-ion on boron-doped MoSi2N4 monolayer[J]. Chinese J. Inorg. Chem., 2021,37(12):2167-2174. doi: 10.11862/CJIC.2021.219 

    33. [33]

      Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K, Payne M C. First principles methods using CASTEP[J]. Z. Kristall., 2005,220(5/6):567-570.

    34. [34]

      Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data[J]. Phys. Rev. Lett., 2009,102(7)073005. doi: 10.1103/PhysRevLett.102.073005

    35. [35]

      Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18)3865. doi: 10.1103/PhysRevLett.77.3865

    36. [36]

      Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12)5188. doi: 10.1103/PhysRevB.13.5188

    37. [37]

      Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q. First-principles investigation of the Schottky contact for the two-dimensional MoS2 and graphene heterostructure[J]. RSC Adv., 2016,6(65):60271-60276. doi: 10.1039/C6RA12812B

    38. [38]

      Yeoh K H, Yoon T L, Lim T L, Ong D S. Monolayer GaN functionalized with alkali metal and alkaline earth metal atoms: A first-principles study[J]. Superlattices Microstruct., 2019,130:428-436. doi: 10.1016/j.spmi.2019.05.011

    39. [39]

      Gao D Q, Liu Y G, Liu P T, Si M S, Xue D S. Atomically thin B doped g-C3N4 nanosheets: high-temperature ferromagnetism and calculated half-metallicity[J]. Sci. Rep., 2016,6(1):1-8. doi: 10.1038/s41598-016-0001-8

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    7. [7]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

Metrics
  • PDF Downloads(2)
  • Abstract views(568)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return