Citation: Juan LIU, Yu-Zheng LU, Jing-Jing YANG, Ruo-Ming WANG, Bin ZHU, Si-Ning YUN. Al2O3-CeO2 composite electrolyte: Preparation and performance of semiconductor ionic fuel cell[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1699-1710. doi: 10.11862/CJIC.2023.131 shu

Al2O3-CeO2 composite electrolyte: Preparation and performance of semiconductor ionic fuel cell

  • Corresponding author: Si-Ning YUN, yunsining@xauat.edu.cn
  • Received Date: 8 March 2023
    Revised Date: 14 June 2023

Figures(8)

  • Al2O3-CeO2composite was prepared by coprecipitation method and used as electrolytes in semiconductor ionic fuel cells (SIFCs). We investigated the impact of Al2O3-CeO2 composite electrolyte with different molar ratio of Al2O3 and CeO2 on the electrochemical performance of fuel cells. The composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Among the composites, the obtained Al2O3-CeO2 when the molar ratio was 1∶0.5 exhibited the best performance, and its maximum power density was 1 142 mW·cm-2 when the open-circuit voltage was 1.099 V at 550 ℃. Furthermore, the Al2O3-CeO2 cell displayed excellent mixed ionic conduction and power output performance due to the interface effect of the composite material as the fuel cell electrolyte in the test atmosphere.
  • 加载中
    1. [1]

      Wachsman E D, Lee K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011,334(6058):935-939. doi: 10.1126/science.1204090

    2. [2]

      Duan C C, Kee R J, Zhu H Y, Karakaya C, Chen Y C, Ricote S, Jarry A, Crumlin E J, Hook D, Braun R, Sullivan N P, O'Hayre R. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells[J]. Nature, 2018,557(7704):217-222. doi: 10.1038/s41586-018-0082-6

    3. [3]

      Xia C, Qiao Z, Shen L P, Liu X Q, Cai Y X, Xu Y, Qiao J L, Wang H. Semiconductor electrolyte for low-operating-temperature solid oxide fuel cell: Li-doped ZnO[J]. Int. J. Hydrog. Energy, 2018,43(28):12825-12834. doi: 10.1016/j.ijhydene.2018.04.121

    4. [4]

      Lu Y Z, Zhu B, Shi J, Yun S N. Advanced low-temperature solid oxide fuel cells based on a built-in electric field[J]. Energy Mater., 2021,1(1)100007.

    5. [5]

      Zhu B, Huang Y Z, Fan L D, Ma Y, Wang B Y, Xia C, Afzal M, Zhang B W, Dong W J, Wang H, Lund P. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle[J]. Nano Energy, 2016,19:156-164. doi: 10.1016/j.nanoen.2015.11.015

    6. [6]

      Akbar M, Tu Z W, Jin B, Mushtaq N, He Z, Dong W J, Wang B Y, Wang X Y, Xia C. Demonstrating the dual functionalities of CeO2-CuO composites in solid oxide fuel cells[J]. Int. J. Hydrog. Energy, 2021,46(15):9938-9947. doi: 10.1016/j.ijhydene.2020.04.272

    7. [7]

      Xing Y M, Wu Y, Li L Y, Shi Q, Shi J, Yun S N, Akbar M, Wang B Y, Kim J S, Zhu B. Proton shuttles in CeO2/CeO2-δ core-shell structure[J]. ACS Energy Lett., 2019,4(11):2601-2607. doi: 10.1021/acsenergylett.9b01829

    8. [8]

      Zhu B, Mi Y Q, Xia C, Wang B Y, Kim J S, Lund P, Li T. A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: Materials and technology[J]. Energy Mater., 2021,1(1)100002.

    9. [9]

      Raza T, Yang J J, Wang R M, Xia C, Raza R, Zhu B, Yun S N. Recent advance in physical description and material development for single component SOFC: A mini-review[J]. Chem. Eng. J., 2022,444136533. doi: 10.1016/j.cej.2022.136533

    10. [10]

      Jiang B L, Gong J, Zhang J, Li F, Zhang J J, Liu Y X, Chen Y G, Song H. Highly active Ni2P catalyst supported on core-shell structured Al2O3@TiO2 and its performance for benzofuran hydrodeoxygenation[J]. Ind. Eng. Chem. Res., 2017,56(42):12038-12045. doi: 10.1021/acs.iecr.7b02018

    11. [11]

      Thokchom J S, Xiao H, Rottmayer M, Reitz T L, Kumar B. Heterogeneous electrolyte (YSZ-Al2O3) based direct oxidation solid oxide fuel cell[J]. J. Power Sources, 2008,178(1):26-33. doi: 10.1016/j.jpowsour.2007.12.009

    12. [12]

      Wang B Y, Chen S S, Dong W J, Wang X Y, Shen L P, Wang H. Advance fuel cells using Al2O3-nNaAlO2 composite as ion-conducting membrane[J]. Int. J. Hydrog. Energy, 2018,43(28):12847-12855. doi: 10.1016/j.ijhydene.2018.04.149

    13. [13]

      Zhang T S, Zeng Z Q, Huang H T, Hing P, Kilner J. Effect of alumina addition on the electrical and mechanical properties of Ce0.8Gd0.2O2-δ ceramics[J]. Mater. Lett., 2002,57(1):124-129. doi: 10.1016/S0167-577X(02)00717-6

    14. [14]

      Zhang Y F, Liu J J, Singh M, Hu E Y, Jiang Z, Raza R, Wang F Z, Wang J, Yang F, Zhu B. Superionic conductivity in ceria-based heterostructure composites for low-temperature solid oxide fuel cells[J]. Nano-Micro Lett., 2020,12(1)20. doi: 10.1007/s40820-019-0364-z

    15. [15]

      Li W, Feng X L, Zhang Z, Jin X, Liu D P, Zhang Y. A controllable surface etching strategy for well-defined spiny yolk@shell CuO@CeO2 cubes and their catalytic performance boost[J]. Adv. Funct. Mater., 2018,28(49)1802559. doi: 10.1002/adfm.201802559

    16. [16]

      Hu E Y, Jiang Z, Fan L D, Singh M, Wang F Z, Raza R, Sajid M, Wang J, Kim J S, Zhu B. Junction and energy band on novel semiconductor-based fuel cells[J]. iScience, 2021,24(3)102191. doi: 10.1016/j.isci.2021.102191

    17. [17]

      Leon C, Santamaria J, Boukamp B A. Oxide interfaces with enhanced ion conductivity[J]. MRS Bull., 2013,38(12):1056-1063. doi: 10.1557/mrs.2013.264

    18. [18]

      Xiang Y H, Zheng D, Zhou X M, Cai H D, Wang K, Xia C, Wang X Y, Dong W J, Wang H, Wang B Y. Advances in novel SDC@Al2O3 core-shell electrolyte for low-temperature solid oxide fuel cell[J]. J. Am. Ceram. Soc., 2022,105(6):4457-4470. doi: 10.1111/jace.18339

    19. [19]

      Liu Y Y, Fan L D, Cai Y X, Zhang W, Wang B Y, Zhu B. Superionic conductivity of Sm3+, Pr3+, and Nd3+ triple-doped ceria through bulk and surface two-step doping approach[J]. ACS Appl. Mater. Interfaces, 2017,9(28):23614-23623. doi: 10.1021/acsami.7b02224

    20. [20]

      Piumetti M, Bensaid S, Russo N, Fino D. Nanostructured ceria-based catalysts for soot combustion: Investigations on the surface sensitivity[J]. Appl. Catal. B-Environ., 2015,165:742-751. doi: 10.1016/j.apcatb.2014.10.062

    21. [21]

      Jin F J, Shen Y, Wang R, He T M. Double-perovskite PrBaCo2/3 Fe2/3Cu2/3O5+δ as cathode material for intermediate-temperature solid-oxide fuel cells[J]. J. Power Sources, 2013,234:244-251. doi: 10.1016/j.jpowsour.2013.01.172

    22. [22]

      Jiang F, Wang S S, Liu B, Liu J, Wang L, Xiao Y, Xu Y B, Liu X H. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts[J]. ACS Catal., 2020,10(19):11493-11509. doi: 10.1021/acscatal.0c03324

    23. [23]

      He D D, Hao H S, Chen D K, Liu J P, Yu J, Lu J C, Liu F, Wan G P, He S F, Luo Y M. Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition[J]. Catal. Today, 2017,281:559-565. doi: 10.1016/j.cattod.2016.06.022

    24. [24]

      Zhu B, Wang B Y, Wang Y, Raza R, Tan W Y, Kim J, Van P, Lund P. Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell[J]. Nano Energy, 2017,37:195-202. doi: 10.1016/j.nanoen.2017.05.003

    25. [25]

      Zhu B, Lund P, Raza R, Patakangas J, Huang Q A, Fan L D, Singh M. A new energy conversion technology based on nano-redox and nano-device processes[J]. Nano Energy, 2013,2(6):1179-1185. doi: 10.1016/j.nanoen.2013.05.001

    26. [26]

      Chen G, Sun W K, Luo Y D, He Y, Zhang X B, Zhu B, Li W Y, Liu X B, Ding Y S, Li Y, Geng S J, Yu K. Advanced fuel cell based on new nanocrystalline structure Gd0.1Ce0.9O2 electrolyte[J]. ACS Appl. Mater. Interfaces, 2019,11(11):10642-10650. doi: 10.1021/acsami.8b20454

    27. [27]

      Zhu B, Fan L D, Deng H, He Y J, Afzal M, Dong W J, Yaqub A, Janjua N K. LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells[J]. J. Power Sources, 2016,316:37-43. doi: 10.1016/j.jpowsour.2016.03.056

    28. [28]

      Meng Y J, Wang X, Zhang W, Xia C, Liu Y N, Yuan M, Zhu B, Ji Y. Novel high ionic conductivity electrolyte membrane based on semiconductor La0.65Sr0.3Ce0.05Cr0.5Fe0.5O3-δ for low-temperature solid oxide fuel cells[J]. J. Power Sources, 2019,421:33-40. doi: 10.1016/j.jpowsour.2019.02.100

    29. [29]

      Liu Y Y, Tang Y F, Ma Z H, Singh M, He Y J, Dong W J, Sun C W, Zhu B. Flowerlike CeO2 microspheres coated with Sr2Fe1.5Mo0.5Ox nanoparticles for an advanced fuel cell[J]. Sci. Rep., 2015,511946. doi: 10.1038/srep11946

    30. [30]

      Nie X Y, Zheng D, Chen Y, Wang B Y, Xia C, Dong W J, Wang X Y, Wang H, Zhu B. Processing SCNT(SrCo0.8Nb0.1Ta0.1O3-δ)-SCDC(Ce0.8Sm0.05Ca0.15O2-δ) composite into semiconductor-ionic membrane fuel cell (SIMFC) to operate below 500 ℃[J]. Int. J. Hydrog. Energy, 2019,44(59):31372-31385. doi: 10.1016/j.ijhydene.2019.09.236

    31. [31]

      Rauf S, Shah M A K Y, Zhu B, Tayyab Z, Ali N, Attique S, Xia C, Khatoon R, Yang C P, Asghar M I, Lund P D. Electrochemical properties of a dual-ion semiconductor-ionic Co0.2Zn0.8O-Sm0.20Ce0.80O2-δ composite for a high-performance low-temperature solid oxide fuel cell[J]. ACS Appl. Energy Mater., 2021,4(1):194-207. doi: 10.1021/acsaem.0c02095

    32. [32]

      Yang F, Dong T, Zhang X X, Liu J J, Tian W T, Zhang Y F. Semiconductor ionic Ce0.8Sm0.2O2-δ-Na2CO3-LiCo0.225Cu0.075Ni0.7O3-δ composite material as electrolyte for low temperature solid oxide fuel cells[J]. Int. J. Hydrog. Energy, 2020,45(29):14972-14978. doi: 10.1016/j.ijhydene.2019.12.092

    33. [33]

      Xia C, Wang B Y, Ma Y, Cai Y X, Afzal M, Liu Y Y, He Y J, Zhang W, Dong W J, Li J J, Zhu B. Industrial-grade rare-earth and perovskite oxide for high-performance electrolyte layer-free fuel cell[J]. J. Power Sources, 2016,307:270-279. doi: 10.1016/j.jpowsour.2015.12.086

    34. [34]

      Qiao Z, Xia C, Cai Y X, Afzal M, Wang H, Qiao J L, Zhu B, Van P. Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications[J]. J. Power Sources, 2018,392:33-40. doi: 10.1016/j.jpowsour.2018.04.096

    35. [35]

      Xia C, Mi Y Q, Wang B Y, Lin B, Chen G, Zhu B. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells[J]. Nat. Commun., 2019,101707. doi: 10.1038/s41467-019-09532-z

    36. [36]

      Chen M M, Zhang H J, Fan L D, Wang C Y, Zhu B. Ceria-carbonate composite for low temperature solid oxide fuel cell: Sintering aid and composite effect[J]. Int. J. Hydrog. Energy, 2014,39(23):12309-12316. doi: 10.1016/j.ijhydene.2014.04.004

    37. [37]

      Gao Z, Mogni L, Miller E, Railsback J, Barnett S. A perspective on low-temperature solid oxide fuel cells[J]. Energy Environ. Sci., 2016,9(5):1602-1644. doi: 10.1039/C5EE03858H

    38. [38]

      Pornprasertsuk R, Kosasang O, Somroop K, Horprathum M, Limnonthakul P, Chindaudom P, Jinawath S. Proton conductivity of Y-doped BaZrO3: Pellets and thin films[J]. Solid State Sci., 2011,13(7):1429-1437. doi: 10.1016/j.solidstatesciences.2011.04.015

    39. [39]

      Hu H Q, Lin Q Z, Muhammad A, Zhu B. Electrochemical study of lithiated transition metal oxide composite for single layer fuel cell[J]. J. Power Sources, 2015,286:388-393. doi: 10.1016/j.jpowsour.2015.03.187

    40. [40]

      Fan L D, Su P C. Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells[J]. J. Power Sources, 2016,306:369-377. doi: 10.1016/j.jpowsour.2015.12.015

    41. [41]

      Chen G, Sun W K, Luo Y D, Liu H L, Geng S J, Yu K, Liu G Q. Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells[J]. Int. J. Hydrog. Energy, 2018,43(1):417-425. doi: 10.1016/j.ijhydene.2017.11.056

    42. [42]

      Wang X D, Ma Y, Raza R, Muhammed M, Zhu B. Novel core-shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs[J]. Electrochem. Commun., 2008,10(10):1617-1620. doi: 10.1016/j.elecom.2008.08.023

    43. [43]

      Wang X D, Ma Y, Li S H, Kashyout A, Zhu B, Muhammed M. Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells[J]. J. Power Sources, 2011,196(5):2754-2758. doi: 10.1016/j.jpowsour.2010.11.033

    44. [44]

      Wang B Y, Wang Y, Fan L D, Cai Y X, Xia C, Liu Y Y, Raza R, Van P, Wang H, Zhu B. Preparation and characterization of Sm and Ca co-doped ceria-La0.6Sr0.4Co0.2Fe0.8O3-δ semiconductor-ionic composites for electrolyte-layer-free fuel cells[J]. J. Mater. Chem. A, 2016,4(40):15426-15436. doi: 10.1039/C6TA05763B

    45. [45]

      Huang J B, Gao Z, Mao Z Q. Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs[J]. Int. J. Hydrog. Energy, 2010,35(9):4270-4275. doi: 10.1016/j.ijhydene.2010.01.063

  • 加载中
    1. [1]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    2. [2]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    3. [3]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    12. [12]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    13. [13]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    18. [18]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

Metrics
  • PDF Downloads(2)
  • Abstract views(427)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return