Manganese ion oxidation precipitation method for the recycling and reusing of LiNi0.8Co0.05Mn0.15O2 materials for lithium-ion batteries
- Corresponding author: Ping HE, pinghe@nju.edu.cn
Citation: Zhao-Cheng WANG, Yi-Gang WANG, Chuan-Chao SHENG, Ping HE, Hao-Shen ZHOU. Manganese ion oxidation precipitation method for the recycling and reusing of LiNi0.8Co0.05Mn0.15O2 materials for lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1661-1672. doi: 10.11862/CJIC.2023.130
WANG J Y, WANG R, WANG S Q, WANG L F, ZHAN C. Facile one-step solid-state synthesis of Ni-rich layered oxide cathodes for lithiumion batteries[J]. Journal of Electrochemistry, 2022,28(8)2112131. doi: 10.13208/j.electrochem.211213
MA H Y, YAO X H, MIAO M Y, YI Y, WU S Z, ZHOU J. Degradation mechanism of LiNi0.83Co0.12Mn0.05O2 cycled at 45℃[J]. Journal of Electrochemistry, 2020,26(3):431-440.
Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019,575(7781):75-86. doi: 10.1038/s41586-019-1682-5
Xing C X, Da H, Yang P, Huang J W, Gan M, Zhou J, Li Y, Zhang H T, Ge B H, Fei L F. Aluminum impurity from current collectors reactivates degraded NCM cathode materials toward superior electrochemical performance[J]. ACS Nano, 2023,17(3):3194-3203. doi: 10.1021/acsnano.3c00270
Zheng X H, Zhu Z W, Lin X, Zhang Y, He Y, Cao H B, Sun Z. A minireview on metal recycling from spent lithium ion batteries[J]. Engineering, 2018,4(3):361-370. doi: 10.1016/j.eng.2018.05.018
Zhang N, He Y C, Yi X, Yan Y N, Xu W L. Rapid start-up of autotrophic shortcut nitrification system in SBR and microbial community analysis[J]. Environ. Technol., 2022,43(27):4363-4375. doi: 10.1080/09593330.2021.1950213
Pan F, Yu Y, Xu A H, Xia D S, Sun Y M, Cai Z Q, Liu W, Fu J. Application of magnetic OMS-2 in sequencing batch reactor for treating dye wastewater as a modulator of microbial community[J]. J. Hazard. Mater., 2017,340:36-46. doi: 10.1016/j.jhazmat.2017.06.062
Sun L, Qiu K Q. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries[J]. J. Hazard. Mater., 2011,194:378-84. doi: 10.1016/j.jhazmat.2011.07.114
Xiao J F, Li J, Xu Z M. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy[J]. J. Hazard. Mater., 2017,338:124-131. doi: 10.1016/j.jhazmat.2017.05.024
Li J H, Zhong S W, Xiong D L, Chen H. Synthesis and electrochemical performances of LiCoO2 recycled from the incisors bound of Liion batteries[J]. Rare Metals, 2009,28(4):328-332. doi: 10.1007/s12598-009-0064-9
Choubey P K, Kim M S, Srivastava R R, Lee J C, Lee J Y. Advance review on the exploitation of the prominent energy-storage element: lithium. Part Ⅰ: From mineral and brine resources[J]. Miner. Eng., 2016,89:119-137. doi: 10.1016/j.mineng.2016.01.010
Choubey P K, Chung K S, Kim M S, Lee J C, Srivastava R R. Advance review on the exploitation of the prominent energy-storage element lithium. Part Ⅱ: From sea water and spent lithium ion batteries (LIBs)[J]. Miner. Eng., 2017,110:104-121. doi: 10.1016/j.mineng.2017.04.008
Rao Z H, Wang S F. A review of power battery thermal energy management[J]. Renew. Sust. Energ. Rev., 2011,15(9):4554-4571. doi: 10.1016/j.rser.2011.07.096
Li L, Fan E S, Guan Y B A, Zhang X X, Xue Q, Wei L, Wu F, Chen R J. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustain. Chem. Eng., 2017,5(6):5224-5233. doi: 10.1021/acssuschemeng.7b00571
Li M T, Zhang B L, Qu X, Cai M Y, Liu D X, Zhou F Y, Xie H W, Gao S B, Yin H Y. A SiCl4-assisted roasting approach for recovering spent LiCoO2 cathode[J]. ACS Sustain. Chem. Eng., 2022,10(26):8305-8313. doi: 10.1021/acssuschemeng.2c00814
Zhang J F, Hu W Y, Zou J T, Wang X W, Li P F, Peng D Z, Li Y, Zhao R R, He D. Directional high-value regeneration of lithium, iron, and phosphorus from spent lithium iron phosphatebatteries[J]. ACS Sustain. Chem. Eng., 2022,10(40):13424-13434. doi: 10.1021/acssuschemeng.2c03997
Chen D D, Rao S, Wang D X, Cao H Y, Xie W M, Liu Z Q. Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid-l-ascorbic acid system[J]. Chem. Eng. J., 2020,388124321. doi: 10.1016/j.cej.2020.124321
Fang J H, Ding Z P, Ling Y, Li J P, Zhuge X Q, Luo Z H, Ren Y R, Luo K. Green recycling and regeneration of LiNi0.5Co0.2Mn0.3O2 from spent lithium-ion batteries assisted by sodium sulfate electrolysis[J]. Chem. Eng. J., 2022,440135880. doi: 10.1016/j.cej.2022.135880
Lee J, Kitchaev D A, Kwon D H, Lee C W, Papp J K, Liu Y S, Lun Z, Clement R J, Shi T, McCloskey B D, Guo J, Balasubramanian M, Ceder G. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials[J]. Nature, 2018,556(7700):185-190. doi: 10.1038/s41586-018-0015-4
Andrew P A, Glen C, David L D, Katy J M, Stephen U O. Solubility of metal oxides in deep eutectic solvents based on choline chloride[J]. J. Chem. Eng. Data, 2006,51:1280-1282. doi: 10.1021/je060038c
Tran M K, Rodrigues M T F, Kato K, Babu G, Ajayan P M. Deep eutectic solvents for cathode recycling of Li-ion batteries[J]. Nat. Energy, 2019,4(4):339-345. doi: 10.1038/s41560-019-0368-4
Lin J, Liu C W, Cao H B, Chen R J, Yang Y X, Li L, Sun Z. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting[J]. Green Chem., 2019,21(21):5904-5913. doi: 10.1039/C9GC01350D
Chang X, Fan M, Gu C F, He W H, Meng Q, Wan L J, Guo Y G. Selective extraction of transition metals from spent LiNixCoyMn1-x-yO2 cathode via regulation of coordination environment[J]. Angew. Chem. Int. Ed., 2022,61(24)e202202558. doi: 10.1002/anie.202202558
Dong L, Zhang L, Jia Y, Shao B, Lü W, Zhao S, You H. Site occupation and luminescence of novel orange-red Ca3M2Ge3O12: Mn2+, Mn4+(M=Al, Ga) phosphors[J]. ACS Sustain. Chem. Eng., 2020,8(8):3357-3366. doi: 10.1021/acssuschemeng.9b07281
Chen Y T, Gu S, Wu S L, Ma X X, Hussain I, Sun Z P, Lu Z G, Zhang K L. Copper activated near-full two-electron Mn4+/Mn2+ redox for mild aqueous Zn/MnO2 battery[J]. Chem. Eng. J., 2022,450(21):306-310.
Dong L P, Zhang L, Jia Y H, Xu Y W, Yin S P, You H. ZnGa2-yAlyO4: Mn2+, Mn4+ thermochromic phosphors: Valence state control and optical temperature sensing[J]. Inorg. Chem., 2020,59(21):15969-15976. doi: 10.1021/acs.inorgchem.0c02474
Zhu B X, Wang L, Shi Q F, Guo H J, Qiao J W, Cui C, Huang P. MgGa2O4: Mn2+, Mn4+: A dual-emitting phosphors with unique optical temperature sensing[J]. J. Alloy. Compd., 2023,948169717. doi: 10.1016/j.jallcom.2023.169717
Shi L Y, Zhao D, Zhang R J, Yao Q X, Liu W. A new optical temperature sensor based on the fluorescence intensity ratio of Mn2+ and Mn4+[J]. J. Am. Ceram. Soc., 2022,105(12):7479-7491. doi: 10.1111/jace.18698
GUO R, SHI P F, CHEN X Q, LI J. Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 by high temperature solid-state method[J]. Chinese J. Inorg. Chem., 2007,23(8):1387-1392. doi: 10.3321/j.issn:1001-4861.2007.08.013
ZHENG Z, HUA W B, WU Z G, XIANG W, ZHONG B H, GUO X D. Controllable preparation of ultra-high rate LiNi1/3Co1/3Mn1/3O2 cathode through carbonate Co-precipitation method for Li-ion batteries[J]. Chinese J. Inorg. Chem., 2017,33(2):307-314.
Pi H, Xiong Y, Guo S Y. The kinetic studies of elimination of HCl during thermal decomposition of PVC in the presence of transition metal oxides[J]. Polym.-Plast. Technol. Eng., 2005,44(2):275-288. doi: 10.1081/PTE-200048727
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Zhangshu Wang , Xin Zhang , Jixin Han , Xuebing Fang , Xiufeng Zhao , Zeyu Gu , Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056
The four influencing factors affecting the leaching process of concentrated hydrochloric acid, except for the variables; Constant conditions: the temperature was 70 ℃, the dosing ratio was 6 mL·g-1, the time was 120 min, and the hydrochloric acid concentration was 5 mol·L-1.
The control group used the method of sequential precipitation of metal ions by adding NaOH, the experimental group used the method of preferential precipitation of leached products by oxidizing Mn2+, with error bars and error ranges marked. It indicates that the fluctuation range of the recovery and purity, taking the recovery of Li in the experimental group as an example, with an error bar of 2.9, the recovery of Li in multiple experiments ranged from 92.1% to 97.9% (Fig. 3a).
(a-c) Li2CO3; (d-f) MnO2; (g-i) Co3O4; (j-l) Ni2O3
The loading of pouch cell was 20.8 mg·cm2, the rate was 1C (99.8 mA), and the current density was 8.32 mA·cm2.