Manganese ion oxidation precipitation method for the recycling and reusing of LiNi0.8Co0.05Mn0.15O2 materials for lithium-ion batteries
- Corresponding author: Ping HE, pinghe@nju.edu.cn
Citation:
Zhao-Cheng WANG, Yi-Gang WANG, Chuan-Chao SHENG, Ping HE, Hao-Shen ZHOU. Manganese ion oxidation precipitation method for the recycling and reusing of LiNi0.8Co0.05Mn0.15O2 materials for lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(9): 1661-1672.
doi:
10.11862/CJIC.2023.130
WANG J Y, WANG R, WANG S Q, WANG L F, ZHAN C. Facile one-step solid-state synthesis of Ni-rich layered oxide cathodes for lithiumion batteries[J]. Journal of Electrochemistry, 2022,28(8)2112131. doi: 10.13208/j.electrochem.211213
MA H Y, YAO X H, MIAO M Y, YI Y, WU S Z, ZHOU J. Degradation mechanism of LiNi0.83Co0.12Mn0.05O2 cycled at 45℃[J]. Journal of Electrochemistry, 2020,26(3):431-440.
Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019,575(7781):75-86. doi: 10.1038/s41586-019-1682-5
Xing C X, Da H, Yang P, Huang J W, Gan M, Zhou J, Li Y, Zhang H T, Ge B H, Fei L F. Aluminum impurity from current collectors reactivates degraded NCM cathode materials toward superior electrochemical performance[J]. ACS Nano, 2023,17(3):3194-3203. doi: 10.1021/acsnano.3c00270
Zheng X H, Zhu Z W, Lin X, Zhang Y, He Y, Cao H B, Sun Z. A minireview on metal recycling from spent lithium ion batteries[J]. Engineering, 2018,4(3):361-370. doi: 10.1016/j.eng.2018.05.018
Zhang N, He Y C, Yi X, Yan Y N, Xu W L. Rapid start-up of autotrophic shortcut nitrification system in SBR and microbial community analysis[J]. Environ. Technol., 2022,43(27):4363-4375. doi: 10.1080/09593330.2021.1950213
Pan F, Yu Y, Xu A H, Xia D S, Sun Y M, Cai Z Q, Liu W, Fu J. Application of magnetic OMS-2 in sequencing batch reactor for treating dye wastewater as a modulator of microbial community[J]. J. Hazard. Mater., 2017,340:36-46. doi: 10.1016/j.jhazmat.2017.06.062
Sun L, Qiu K Q. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries[J]. J. Hazard. Mater., 2011,194:378-84. doi: 10.1016/j.jhazmat.2011.07.114
Xiao J F, Li J, Xu Z M. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy[J]. J. Hazard. Mater., 2017,338:124-131. doi: 10.1016/j.jhazmat.2017.05.024
Li J H, Zhong S W, Xiong D L, Chen H. Synthesis and electrochemical performances of LiCoO2 recycled from the incisors bound of Liion batteries[J]. Rare Metals, 2009,28(4):328-332. doi: 10.1007/s12598-009-0064-9
Choubey P K, Kim M S, Srivastava R R, Lee J C, Lee J Y. Advance review on the exploitation of the prominent energy-storage element: lithium. Part Ⅰ: From mineral and brine resources[J]. Miner. Eng., 2016,89:119-137. doi: 10.1016/j.mineng.2016.01.010
Choubey P K, Chung K S, Kim M S, Lee J C, Srivastava R R. Advance review on the exploitation of the prominent energy-storage element lithium. Part Ⅱ: From sea water and spent lithium ion batteries (LIBs)[J]. Miner. Eng., 2017,110:104-121. doi: 10.1016/j.mineng.2017.04.008
Rao Z H, Wang S F. A review of power battery thermal energy management[J]. Renew. Sust. Energ. Rev., 2011,15(9):4554-4571. doi: 10.1016/j.rser.2011.07.096
Li L, Fan E S, Guan Y B A, Zhang X X, Xue Q, Wei L, Wu F, Chen R J. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustain. Chem. Eng., 2017,5(6):5224-5233. doi: 10.1021/acssuschemeng.7b00571
Li M T, Zhang B L, Qu X, Cai M Y, Liu D X, Zhou F Y, Xie H W, Gao S B, Yin H Y. A SiCl4-assisted roasting approach for recovering spent LiCoO2 cathode[J]. ACS Sustain. Chem. Eng., 2022,10(26):8305-8313. doi: 10.1021/acssuschemeng.2c00814
Zhang J F, Hu W Y, Zou J T, Wang X W, Li P F, Peng D Z, Li Y, Zhao R R, He D. Directional high-value regeneration of lithium, iron, and phosphorus from spent lithium iron phosphatebatteries[J]. ACS Sustain. Chem. Eng., 2022,10(40):13424-13434. doi: 10.1021/acssuschemeng.2c03997
Chen D D, Rao S, Wang D X, Cao H Y, Xie W M, Liu Z Q. Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid-l-ascorbic acid system[J]. Chem. Eng. J., 2020,388124321. doi: 10.1016/j.cej.2020.124321
Fang J H, Ding Z P, Ling Y, Li J P, Zhuge X Q, Luo Z H, Ren Y R, Luo K. Green recycling and regeneration of LiNi0.5Co0.2Mn0.3O2 from spent lithium-ion batteries assisted by sodium sulfate electrolysis[J]. Chem. Eng. J., 2022,440135880. doi: 10.1016/j.cej.2022.135880
Lee J, Kitchaev D A, Kwon D H, Lee C W, Papp J K, Liu Y S, Lun Z, Clement R J, Shi T, McCloskey B D, Guo J, Balasubramanian M, Ceder G. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials[J]. Nature, 2018,556(7700):185-190. doi: 10.1038/s41586-018-0015-4
Andrew P A, Glen C, David L D, Katy J M, Stephen U O. Solubility of metal oxides in deep eutectic solvents based on choline chloride[J]. J. Chem. Eng. Data, 2006,51:1280-1282. doi: 10.1021/je060038c
Tran M K, Rodrigues M T F, Kato K, Babu G, Ajayan P M. Deep eutectic solvents for cathode recycling of Li-ion batteries[J]. Nat. Energy, 2019,4(4):339-345. doi: 10.1038/s41560-019-0368-4
Lin J, Liu C W, Cao H B, Chen R J, Yang Y X, Li L, Sun Z. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting[J]. Green Chem., 2019,21(21):5904-5913. doi: 10.1039/C9GC01350D
Chang X, Fan M, Gu C F, He W H, Meng Q, Wan L J, Guo Y G. Selective extraction of transition metals from spent LiNixCoyMn1-x-yO2 cathode via regulation of coordination environment[J]. Angew. Chem. Int. Ed., 2022,61(24)e202202558. doi: 10.1002/anie.202202558
Dong L, Zhang L, Jia Y, Shao B, Lü W, Zhao S, You H. Site occupation and luminescence of novel orange-red Ca3M2Ge3O12: Mn2+, Mn4+(M=Al, Ga) phosphors[J]. ACS Sustain. Chem. Eng., 2020,8(8):3357-3366. doi: 10.1021/acssuschemeng.9b07281
Chen Y T, Gu S, Wu S L, Ma X X, Hussain I, Sun Z P, Lu Z G, Zhang K L. Copper activated near-full two-electron Mn4+/Mn2+ redox for mild aqueous Zn/MnO2 battery[J]. Chem. Eng. J., 2022,450(21):306-310.
Dong L P, Zhang L, Jia Y H, Xu Y W, Yin S P, You H. ZnGa2-yAlyO4: Mn2+, Mn4+ thermochromic phosphors: Valence state control and optical temperature sensing[J]. Inorg. Chem., 2020,59(21):15969-15976. doi: 10.1021/acs.inorgchem.0c02474
Zhu B X, Wang L, Shi Q F, Guo H J, Qiao J W, Cui C, Huang P. MgGa2O4: Mn2+, Mn4+: A dual-emitting phosphors with unique optical temperature sensing[J]. J. Alloy. Compd., 2023,948169717. doi: 10.1016/j.jallcom.2023.169717
Shi L Y, Zhao D, Zhang R J, Yao Q X, Liu W. A new optical temperature sensor based on the fluorescence intensity ratio of Mn2+ and Mn4+[J]. J. Am. Ceram. Soc., 2022,105(12):7479-7491. doi: 10.1111/jace.18698
GUO R, SHI P F, CHEN X Q, LI J. Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 by high temperature solid-state method[J]. Chinese J. Inorg. Chem., 2007,23(8):1387-1392. doi: 10.3321/j.issn:1001-4861.2007.08.013
ZHENG Z, HUA W B, WU Z G, XIANG W, ZHONG B H, GUO X D. Controllable preparation of ultra-high rate LiNi1/3Co1/3Mn1/3O2 cathode through carbonate Co-precipitation method for Li-ion batteries[J]. Chinese J. Inorg. Chem., 2017,33(2):307-314.
Pi H, Xiong Y, Guo S Y. The kinetic studies of elimination of HCl during thermal decomposition of PVC in the presence of transition metal oxides[J]. Polym.-Plast. Technol. Eng., 2005,44(2):275-288. doi: 10.1081/PTE-200048727
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
Junhao Dai , Zhu He , Xinhai Li , Guochun Yan , Hui Duan , Guangchao Li , Zhixing Wang , Huajun Guo , Wenjie Peng , Jiexi Wang . Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2. Chinese Chemical Letters, 2025, 36(6): 110063-. doi: 10.1016/j.cclet.2024.110063
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
Hongyu Tang , Dongming Liu , Jinfu Huang , Liang Zhang , Yang Tang , Bin Huang , Yanwei Li , Shunhua Xiao , Yiling Sun , Renheng Wang . Excellent structural stability and electrochemical properties of LiNi0.9Co0.05Mn0.05O2 material by surface Ni2+ anchoring and Cs+ doping. Chinese Chemical Letters, 2025, 36(6): 109987-. doi: 10.1016/j.cclet.2024.109987
Wenjuan Tan , Yong Ye , Xiujuan Sun , Bei Liu , Jiajia Zhou , Hailong Liao , Xiulin Wu , Rui Ding , Enhui Liu , Ping Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
The four influencing factors affecting the leaching process of concentrated hydrochloric acid, except for the variables; Constant conditions: the temperature was 70 ℃, the dosing ratio was 6 mL·g-1, the time was 120 min, and the hydrochloric acid concentration was 5 mol·L-1.
The control group used the method of sequential precipitation of metal ions by adding NaOH, the experimental group used the method of preferential precipitation of leached products by oxidizing Mn2+, with error bars and error ranges marked. It indicates that the fluctuation range of the recovery and purity, taking the recovery of Li in the experimental group as an example, with an error bar of 2.9, the recovery of Li in multiple experiments ranged from 92.1% to 97.9% (Fig. 3a).
(a-c) Li2CO3; (d-f) MnO2; (g-i) Co3O4; (j-l) Ni2O3
The loading of pouch cell was 20.8 mg·cm2, the rate was 1C (99.8 mA), and the current density was 8.32 mA·cm2.