Citation: Zhao-Cheng WANG, Yi-Gang WANG, Chuan-Chao SHENG, Ping HE, Hao-Shen ZHOU. Manganese ion oxidation precipitation method for the recycling and reusing of LiNi0.8Co0.05Mn0.15O2 materials for lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1661-1672. doi: 10.11862/CJIC.2023.130 shu

Manganese ion oxidation precipitation method for the recycling and reusing of LiNi0.8Co0.05Mn0.15O2 materials for lithium-ion batteries

  • Corresponding author: Ping HE, pinghe@nju.edu.cn
  • Received Date: 22 April 2023
    Revised Date: 11 June 2023

Figures(8)

  • This paper proposes a scheme of recycling spent batteries, using concentrated hydrochloric acid as leaching agent, NaOH and NH4HCO3 as precipitating agents. The oxidation reaction of Mn2+ under alkaline conditions was included to change the precipitation order of ions, thus recovered ions in steps. The optimal conditions for acid leaching of concentrated hydrochloric acid to treat the ternary cathode material LiNi0.8Co0.05Mn0.15O2 were studied. In the stepwise precipitation process, Mn2+ was oxidized to MnO(OH)2, which is insoluble in non-reducing acids, and then Mn was recovered under acidic conditions. While Ni and Co were recovered under alkaline conditions by using NaOH. Li was recovered by using NH4HCO3. Using this method, the recovery of Mn reached 85.1% and the product purity reached 98.6%; the recovery of Li reached 95.0% and the product purity reached 99.3%. The pouch cell assembled with the re-synthesized ternary cathode using the recovered material reached a discharge specific capacity of 175 mAh·g-1 in the first cycle. It could stably cycle for 50 cycles with Coulombic efficiency of over 99.5%.
  • 加载中
    1. [1]

      WANG J Y, WANG R, WANG S Q, WANG L F, ZHAN C. Facile one-step solid-state synthesis of Ni-rich layered oxide cathodes for lithiumion batteries[J]. Journal of Electrochemistry, 2022,28(8)2112131. doi: 10.13208/j.electrochem.211213

    2. [2]

      MA H Y, YAO X H, MIAO M Y, YI Y, WU S Z, ZHOU J. Degradation mechanism of LiNi0.83Co0.12Mn0.05O2 cycled at 45℃[J]. Journal of Electrochemistry, 2020,26(3):431-440.  

    3. [3]

      Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019,575(7781):75-86. doi: 10.1038/s41586-019-1682-5

    4. [4]

      Xing C X, Da H, Yang P, Huang J W, Gan M, Zhou J, Li Y, Zhang H T, Ge B H, Fei L F. Aluminum impurity from current collectors reactivates degraded NCM cathode materials toward superior electrochemical performance[J]. ACS Nano, 2023,17(3):3194-3203. doi: 10.1021/acsnano.3c00270

    5. [5]

      Zheng X H, Zhu Z W, Lin X, Zhang Y, He Y, Cao H B, Sun Z. A minireview on metal recycling from spent lithium ion batteries[J]. Engineering, 2018,4(3):361-370. doi: 10.1016/j.eng.2018.05.018

    6. [6]

      Zhang N, He Y C, Yi X, Yan Y N, Xu W L. Rapid start-up of autotrophic shortcut nitrification system in SBR and microbial community analysis[J]. Environ. Technol., 2022,43(27):4363-4375. doi: 10.1080/09593330.2021.1950213

    7. [7]

      Pan F, Yu Y, Xu A H, Xia D S, Sun Y M, Cai Z Q, Liu W, Fu J. Application of magnetic OMS-2 in sequencing batch reactor for treating dye wastewater as a modulator of microbial community[J]. J. Hazard. Mater., 2017,340:36-46. doi: 10.1016/j.jhazmat.2017.06.062

    8. [8]

      Sun L, Qiu K Q. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries[J]. J. Hazard. Mater., 2011,194:378-84. doi: 10.1016/j.jhazmat.2011.07.114

    9. [9]

      Xiao J F, Li J, Xu Z M. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy[J]. J. Hazard. Mater., 2017,338:124-131. doi: 10.1016/j.jhazmat.2017.05.024

    10. [10]

      Li J H, Zhong S W, Xiong D L, Chen H. Synthesis and electrochemical performances of LiCoO2 recycled from the incisors bound of Liion batteries[J]. Rare Metals, 2009,28(4):328-332. doi: 10.1007/s12598-009-0064-9

    11. [11]

      Choubey P K, Kim M S, Srivastava R R, Lee J C, Lee J Y. Advance review on the exploitation of the prominent energy-storage element: lithium. Part Ⅰ: From mineral and brine resources[J]. Miner. Eng., 2016,89:119-137. doi: 10.1016/j.mineng.2016.01.010

    12. [12]

      Choubey P K, Chung K S, Kim M S, Lee J C, Srivastava R R. Advance review on the exploitation of the prominent energy-storage element lithium. Part Ⅱ: From sea water and spent lithium ion batteries (LIBs)[J]. Miner. Eng., 2017,110:104-121. doi: 10.1016/j.mineng.2017.04.008

    13. [13]

      Rao Z H, Wang S F. A review of power battery thermal energy management[J]. Renew. Sust. Energ. Rev., 2011,15(9):4554-4571. doi: 10.1016/j.rser.2011.07.096

    14. [14]

      Li L, Fan E S, Guan Y B A, Zhang X X, Xue Q, Wei L, Wu F, Chen R J. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustain. Chem. Eng., 2017,5(6):5224-5233. doi: 10.1021/acssuschemeng.7b00571

    15. [15]

      Li M T, Zhang B L, Qu X, Cai M Y, Liu D X, Zhou F Y, Xie H W, Gao S B, Yin H Y. A SiCl4-assisted roasting approach for recovering spent LiCoO2 cathode[J]. ACS Sustain. Chem. Eng., 2022,10(26):8305-8313. doi: 10.1021/acssuschemeng.2c00814

    16. [16]

      Zhang J F, Hu W Y, Zou J T, Wang X W, Li P F, Peng D Z, Li Y, Zhao R R, He D. Directional high-value regeneration of lithium, iron, and phosphorus from spent lithium iron phosphatebatteries[J]. ACS Sustain. Chem. Eng., 2022,10(40):13424-13434. doi: 10.1021/acssuschemeng.2c03997

    17. [17]

      Chen D D, Rao S, Wang D X, Cao H Y, Xie W M, Liu Z Q. Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid-l-ascorbic acid system[J]. Chem. Eng. J., 2020,388124321. doi: 10.1016/j.cej.2020.124321

    18. [18]

      Fang J H, Ding Z P, Ling Y, Li J P, Zhuge X Q, Luo Z H, Ren Y R, Luo K. Green recycling and regeneration of LiNi0.5Co0.2Mn0.3O2 from spent lithium-ion batteries assisted by sodium sulfate electrolysis[J]. Chem. Eng. J., 2022,440135880. doi: 10.1016/j.cej.2022.135880

    19. [19]

      Lee J, Kitchaev D A, Kwon D H, Lee C W, Papp J K, Liu Y S, Lun Z, Clement R J, Shi T, McCloskey B D, Guo J, Balasubramanian M, Ceder G. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials[J]. Nature, 2018,556(7700):185-190. doi: 10.1038/s41586-018-0015-4

    20. [20]

      Andrew P A, Glen C, David L D, Katy J M, Stephen U O. Solubility of metal oxides in deep eutectic solvents based on choline chloride[J]. J. Chem. Eng. Data, 2006,51:1280-1282. doi: 10.1021/je060038c

    21. [21]

      Tran M K, Rodrigues M T F, Kato K, Babu G, Ajayan P M. Deep eutectic solvents for cathode recycling of Li-ion batteries[J]. Nat. Energy, 2019,4(4):339-345. doi: 10.1038/s41560-019-0368-4

    22. [22]

      Lin J, Liu C W, Cao H B, Chen R J, Yang Y X, Li L, Sun Z. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting[J]. Green Chem., 2019,21(21):5904-5913. doi: 10.1039/C9GC01350D

    23. [23]

      Chang X, Fan M, Gu C F, He W H, Meng Q, Wan L J, Guo Y G. Selective extraction of transition metals from spent LiNixCoyMn1-x-yO2 cathode via regulation of coordination environment[J]. Angew. Chem. Int. Ed., 2022,61(24)e202202558. doi: 10.1002/anie.202202558

    24. [24]

      Dong L, Zhang L, Jia Y, Shao B, Lü W, Zhao S, You H. Site occupation and luminescence of novel orange-red Ca3M2Ge3O12: Mn2+, Mn4+(M=Al, Ga) phosphors[J]. ACS Sustain. Chem. Eng., 2020,8(8):3357-3366. doi: 10.1021/acssuschemeng.9b07281

    25. [25]

      Chen Y T, Gu S, Wu S L, Ma X X, Hussain I, Sun Z P, Lu Z G, Zhang K L. Copper activated near-full two-electron Mn4+/Mn2+ redox for mild aqueous Zn/MnO2 battery[J]. Chem. Eng. J., 2022,450(21):306-310.

    26. [26]

      Dong L P, Zhang L, Jia Y H, Xu Y W, Yin S P, You H. ZnGa2-yAlyO4: Mn2+, Mn4+ thermochromic phosphors: Valence state control and optical temperature sensing[J]. Inorg. Chem., 2020,59(21):15969-15976. doi: 10.1021/acs.inorgchem.0c02474

    27. [27]

      Zhu B X, Wang L, Shi Q F, Guo H J, Qiao J W, Cui C, Huang P. MgGa2O4: Mn2+, Mn4+: A dual-emitting phosphors with unique optical temperature sensing[J]. J. Alloy. Compd., 2023,948169717. doi: 10.1016/j.jallcom.2023.169717

    28. [28]

      Shi L Y, Zhao D, Zhang R J, Yao Q X, Liu W. A new optical temperature sensor based on the fluorescence intensity ratio of Mn2+ and Mn4+[J]. J. Am. Ceram. Soc., 2022,105(12):7479-7491. doi: 10.1111/jace.18698

    29. [29]

      GUO R, SHI P F, CHEN X Q, LI J. Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 by high temperature solid-state method[J]. Chinese J. Inorg. Chem., 2007,23(8):1387-1392. doi: 10.3321/j.issn:1001-4861.2007.08.013

    30. [30]

      ZHENG Z, HUA W B, WU Z G, XIANG W, ZHONG B H, GUO X D. Controllable preparation of ultra-high rate LiNi1/3Co1/3Mn1/3O2 cathode through carbonate Co-precipitation method for Li-ion batteries[J]. Chinese J. Inorg. Chem., 2017,33(2):307-314.  

    31. [31]

      Pi H, Xiong Y, Guo S Y. The kinetic studies of elimination of HCl during thermal decomposition of PVC in the presence of transition metal oxides[J]. Polym.-Plast. Technol. Eng., 2005,44(2):275-288. doi: 10.1081/PTE-200048727

  • 加载中
    1. [1]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    20. [20]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

Metrics
  • PDF Downloads(9)
  • Abstract views(548)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return