Citation: Xiao-Ning TANG, Shu XIA, Qiu-Yang LUO, Jun-Nan LIU, Xing-Fu YANG, Jiao-Jing SHAO, An XUE. Effect of glycine electrolyte additive on the electrochemical performance of aqueous zinc-ion batteries[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1501-1509. doi: 10.11862/CJIC.2023.128 shu

Effect of glycine electrolyte additive on the electrochemical performance of aqueous zinc-ion batteries

Figures(5)

  • Aqueous zinc-ion batteries (AZIBs) using the Zn metal anode have been considered one of the next-generation commercial batteries with high security, robust capacity, and low price. However, side reactions, Zn dendrites, and limited lifespan still constrain their practical applications. Herein, the electrolyte additive (glycine, Gly) was introduced into the conventional ZnSO4 electrolyte (denoted as ZnSO4-Gly). The abundant polar groups (—COOH and —NH2) on the Gly can regulate the solvation structure of Zn2+ and thus redistribute Zn2+ deposition to avoid dendrites and side reactions. As a result, the excellent cycle life (3 000 h, at 1 mA·cm-2 and 1 mAh·cm-2) of the Zn||Zn symmetric cell was realized in typical ZnSO4 electrolytes with only 50 mmol·L-1 of Gly additive, overwhelmingly larger than bare ZnSO4 (300 h). The Zn||MnO2 battery with ZnSO4-Gly electrolyte displayed much better than the additive-free device in terms of specific capacity and capacity retention.
  • 加载中
    1. [1]

      Hao J N, Long J, Li B, Li X L, Zhang S L, Yang F H, Zeng X H, Yang Z H, Pang W K, Guo Z P. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive[J]. Adv. Funct. Mater., 2019,29(34)1903605. doi: 10.1002/adfm.201903605

    2. [2]

      Hao J, Wang Z Q, Tawiah B, Wang Y D, Chan C Y, Fei B, Feng P. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries[J]. Nano Energy, 2020,70104523. doi: 10.1016/j.nanoen.2020.104523

    3. [3]

      Wang Y Y, Chen Y J, Liu W, Ni X Y, Qing P, Zhao Q W, Wei W F, Ji X B, Ma J M, Chen L B. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode[J]. J. Mater. Chem. A, 2021,9(13):8452-8461. doi: 10.1039/D0TA12177K

    4. [4]

      Cai Z, Ou Y T, Wang J D, Xiao R, Fu L, Zhan R M, Sun Y M. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries[J]. Energy Storage Mater., 2020,27:205-211. doi: 10.1016/j.ensm.2020.01.032

    5. [5]

      Yang S N, Li Y T, Du H X, Liu Y Q, Xiang Y H, Xiong L Z, Wu X M, Wu X W. Copper nanoparticle-modified carbon nanofiber for seeded Zinc deposition enables stable Zn metal anode[J]. ACS Sustain. Chem. Eng., 2022,10(38):12630-12641. doi: 10.1021/acssuschemeng.2c03328

    6. [6]

      Huang Z D, Wang T R, Li X L, Cui H L, Liang G L, Yang Q, Chen Z, Chen A, Guo Y, Fan J, Zhi C Y. Small-dipole-molecule-containing electrolytes for high-voltage aqueous rechargeable batteries[J]. Adv. Mater, 2022,34(4)2106180. doi: 10.1002/adma.202106180

    7. [7]

      Huang J Q, Chi X W, Du Y X, Qiu Q L, Liu Y. Ultrastable zinc anodes enabled by anti-dehydration ionic liquid polymer electrolyte for aqueous Zn batteries[J]. ACS Appl. Mater. Interfaces, 2021,13(3):4008-4016. doi: 10.1021/acsami.0c20241

    8. [8]

      Wu F F, Chen Y C, Chen Y L, Yin R L, Feng Y C, Zheng D, Xu X L, Shi W H, Liu W X, Cao X H. Achieving highly reversible Zinc anodes via N, N-dimethylacetamide enabled Zn-ion solvation regulation[J]. Small, 2022,18(27)2202363. doi: 10.1002/smll.202202363

    9. [9]

      Qin Y, Li H F, Han C P, Mo F N, Wang X. Chemical welding of the electrode-electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries[J]. Adv. Mater., 2022,34(44)2207118. doi: 10.1002/adma.202207118

    10. [10]

      Meng Q, Zhao R Y, Cao P H, Bai Q X, Tang J J, Liu G D, Zhou X Y, Yang J. Stabilization of Zn anode via a multifunctional cysteine additive[J]. Chem. Eng. J., 2022,447137471. doi: 10.1016/j.cej.2022.137471

    11. [11]

      Wang R, Yao M J, Huang S, Tian J L, Niu Z Q. An anti-freezing and anti-drying multifunctional gel electrolyte for flexible aqueous zinc-ion batteries[J]. Sci. China Mater., 2022,65:2189-2196. doi: 10.1007/s40843-021-1924-2

    12. [12]

      Tang X N, Xia S, Luo Q Y, Liu J N, Yang X F, Luo X Q, Xue A. High-performance aqueous asymmetric supercapacitors based on K+ and Na+ co-preinserted δ-MnO2 nanocrystals[J]. J. Mater. Res., 2023. doi: 10.1557/s43578-023-01018-5

    13. [13]

      He H B, Qin H Y, Wu J, Chen X F, Huang R S, Shen F, Wu Z R, Chen G N, Yin S B, Liu J. Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries[J]. Energy Storage Mater., 2021,43:317-336. doi: 10.1016/j.ensm.2021.09.012

    14. [14]

      Wang T T, Li C P, Xie X S, Lu B G, He Z X, Liang S Q, Zhou J. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives[J]. ACS Nano, 2020,14(12):16321-16347. doi: 10.1021/acsnano.0c07041

    15. [15]

      Han C G, Qian X, Li Q, Deng B, Zhu Y, Han Z, Zhang W, Wang W, Feng S P, Chen G. Giant thermopower of ionic gelatin near room temperature[J]. Nat. Sci. Rev., 2020,368(6494):1091-1098.

    16. [16]

      Nguyen M T, Shao Q. Effects of zwitterionic molecules on ionic association in ethylene oxide-based electrolytes[J]. Fluid Phase Equilib., 2020,515112572. doi: 10.1016/j.fluid.2020.112572

    17. [17]

      Shang Y, Kumar P, Musso T, Mittal U, Du Q, Liang X, Kundu D. Long-life Zn anode enabled by low volume concentration of a benign electrolyte additive[J]. Adv. Funct. Mater., 2022,32(36)2200606.

    18. [18]

      Feng D D, Jiao Y C, Wu P Y. Proton-reservoir hydrogel electrolyte for long-term cycling Zn/PANI batteries in wide temperature range[J]. Angew. Chem. Int. Ed., 2023,135(1)e202215060.

    19. [19]

      Zhu J L, Deng W J, Yang N, Xu X Q, Huang C, Zhou Y, Zhang M, Yuan X R, Hu J, Li C, Rui L. Biomolecular regulation of Zinc deposition to achieve ultra-long life and high-rate Zn metal anodes[J]. Small, 2022,18(29)2202509. doi: 10.1002/smll.202202509

    20. [20]

      Li Y M, Wang Y Y, Xu Y, Tian W H, Wang J W, Cheng L W, Yue H, Ji R, Zhu Q N, Yuan H. Dynamic biomolecular "mask" stabilizes Zn anode[J]. Small, 2022,18(26)2202214. doi: 10.1002/smll.202202214

    21. [21]

      Wang H F, Ye W Q, Yin B W, Wang K X, Riaz M S, Xie B B, Zhong Y J, Hu Y. Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes[J]. Angew. Chem. Int. Ed., 2023,135(10)202218872.

    22. [22]

      Lu K R, Chen C L, Wu Y, Liu C, Song J J, Jing H Y, Zhao P, Liu B Y, Xia M Z, Hao Q L. Versatile 1, 3-dimethyl-2-imidazolidinone electrolyte additive: Enables extremely long life zinc metal batteries with different substrates[J]. Sci. China Mater., 2023,457141287.

    23. [23]

      Han D L, Wu S, Zhang S, Deng Y, Cui C, Zhang L, Long Y, Li H, Tao Y, Weng Z, Yang Q H, Kang F Y. A corrosion-resistant and dendrite-free Zinc metal anode in aqueous systems[J]. Small, 2020,16(29)2001736. doi: 10.1002/smll.202001736

    24. [24]

      Wang M L, Wu X Y, Yang D, Zhao H N, He L, Su J, Zhang X, Yin X, Zhao K N, Wang Y Z, Wei Y J. A colloidal aqueous electrolyte modulated by oleic acid for durable zinc metal anode[J]. Chem. Eng. J., 2023,451(1)138589.

    25. [25]

      Li C P, Xie X S, Liu H, Wang P J, Deng C B, Lu B, Zhou J, Liang S Q. Integrated 'all-in-one' strategy to stabilize zinc anodes for high-performance zinc-ion batteries[J]. Nat. Sci. Rev., 2022,9(3)nwab177. doi: 10.1093/nsr/nwab177

    26. [26]

      HANG M M, HUANG J W, WU X W, LIANG S Q, ZHOU J. Electrolyte modulation strategies for rechargeable Zn batteries[J]. Chinese J. Inorg. Chem, 2022,38(8):1451-1469.  

    27. [27]

      Choi C H, Park J B, Park J H, Yu S, Kim D W. Simultaneous manipulation of electron/Zn2+ ion flux and desolvation effect enabled by in-situ built ultra-thin oxide-based artificial interphase for controlled deposition of Zinc metal anodes[J]. Chem. Eng. J., 2023,456(15)141015.

    28. [28]

      Zhao Z W, Li P C, Zhang Z Q, Zhang H, Li G. Dendrite-free zinc anode enabled by buffer-like additive via strong cationic specific absorption[J]. Chem. Eng. J., 2023,454(4)140435.

    29. [29]

      Huang C, Zhao X, Liu S, Hao Y S, Tang Q L, Hu A P, Liu Z X, Chen X H. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions[J]. Adv. Mater., 2021,33(38)2100445. doi: 10.1002/adma.202100445

    30. [30]

      Li C, Shyamsunder A, Hoane A G, Long D M, Kwok C Y, Kotula P G, Zavadil K R, Gewirth A A, Nazar L F. Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry[J]. Joule, 2022,6(5):1103-1120. doi: 10.1016/j.joule.2022.04.017

    31. [31]

      An Y L, Tian Y, Liu C K, Xiong S L, Feng J K, Qian Y T. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free Zinc-ion batteries[J]. ACS Nano, 2021,15(9):15259-15273. doi: 10.1021/acsnano.1c05934

    32. [32]

      Hao J N, Li B, Li X L, Zeng X H, Zhang S L, Yang F H, Liu S L, Li D, Wu C, Guo Z P. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries[J]. Adv. Mater., 2020,32(34)2003021. doi: 10.1002/adma.202003021

    33. [33]

      Li G P, Wang X L, Lv S H, Wang J X, Yu W S, Dong X T, Liu D T. In situ constructing a film-coated 3D porous Zn anode byiodine etching strategy toward horizontally arranged dendrite-free Zn deposition[J]. Adv. Funct. Mater., 2022,33(4)2208288.

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    5. [5]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    6. [6]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    13. [13]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    16. [16]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    17. [17]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    18. [18]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(18)
  • Abstract views(1440)
  • HTML views(190)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return