Construction of Z-scheme CdIn2S4/ZnSnO3 heterostructure for photocatalytic hydrogen production performance
- Corresponding author: Dan-Jun WANG, wangdj761118@163.com
Citation: Chuan-Tao WANG, Ying-Xian WANG, Li GUO, Zhi-Xiong YANG, Si-Fan ZHOU, Rui DU, Dan-Jun WANG. Construction of Z-scheme CdIn2S4/ZnSnO3 heterostructure for photocatalytic hydrogen production performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1637-1648. doi: 10.11862/CJIC.2023.127
Bie C B, Wang L X, Yu J G. Challenges for photocatalytic overall water splitting[J]. Chem, 2022,8(6):1567-1574. doi: 10.1016/j.chempr.2022.04.013
Villa K, Galán-Mascarós J R, López N, Palomares E. Photocatalytic water splitting: Advantages and challenges[J]. Sustain. Energ. Fuels, 2021,5(18):4560-4569. doi: 10.1039/D1SE00808K
Wang L, Wan Y Y, Ding Y J, Wu S K, Zhang Y, Zhang X L, Zhang G Q, Xiong Y J, Wu X J, Yang J L, Xu H X. Conjugated microporous polymer nanosheets for overall water splitting using visible light[J]. Adv. Mater, 2017,29(38)1702428. doi: 10.1002/adma.201702428
Dawood F, Anda M, Shafiullah G M. Hydrogen production for energy: An overview[J]. Int. J. Hydrog. Energy, 2020,45(7):3847-3869. doi: 10.1016/j.ijhydene.2019.12.059
Stegbauer L, Schwinghammer K, Lotsch B V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production[J]. Chem. Sci, 2014,5(7):2789-2793. doi: 10.1039/C4SC00016A
Ruan Q, Luo W J, Xie J J, Wang Y O, Liu X, Bai Z M, Carmalt C J, Tang J W. A nanojunction polymer photoelectrode for efficient charge transport and separation[J]. Angew. Chem. Int. Ed, 2017,56(28):8221-8225. doi: 10.1002/anie.201703372
Zhang G G, Lan Z A, Lin L H, Lin S, Wang X C. Overall water splitting by Pt/gC3N4 photocatalysts without using sacrificial agents[J]. Chem. Sci, 2016,7(5):3062-3066. doi: 10.1039/C5SC04572J
CAO Z Y, WU Y, GAO J H. Bi9P2O18Cl: Phase transition and hydrogen production by photocatalytic water-splitting[J]. Chinese J. Inorg. Chem, 2022,38(5):969-976.
ZU W L, LI L, HUANG J W, SUN Y R, MA F Y, CAO Y Z. Multipathway photoelectron migration and photocatalytic properties of AgIn5S8/carbon quantum dots/ZnIn2S4[J]. Chinese J. Inorg. Chem, 2022,38(6):1059-1072.
Mu J L, Teng F, Miao H, Wang Y S, Hu X Y. In-situ oxidation fabrication of 0D/2D SnO2/SnS2 novel step-scheme heterojunctions with enhanced photoelectrochemical activity for water splitting[J]. Appl. Surf. Sci, 2020,501143974. doi: 10.1016/j.apsusc.2019.143974
Ng B J, Putri L K, Tan L L, Pasbakhsh P, Chai S P. All-solid-state Z-scheme photocatalyst with carbon nanotubes as an electron mediator for hydrogen evolution under simulated solar light[J]. Chem. Eng. J, 2017,316:41-49. doi: 10.1016/j.cej.2017.01.054
Xia P F, Cao S W, Zhu B C, Liu M J, Shi M S, Yu J G, Zhang Y F. Designing 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angew. Chem. Int. Ed, 2020,59(13):5218-5225. doi: 10.1002/anie.201916012
Weng B, Qi M Y, Han C, Tang Z R, Xu Y J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective[J]. ACS Catal, 2019,9:4642-4687. doi: 10.1021/acscatal.9b00313
TANG Y P, ZHAO Y F, YANG H Y, LI N. Hydrogen storage capa-bilities of the low-lying Ca2B4 clusters[J]. Chinese J. Inorg. Chem, 2022,38(7):1391-1401.
Weng B, Lu K Q, Tang Z C, Chen H M, Xu Y J. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis[J]. Nat. Commun, 2018,9(1)1543. doi: 10.1038/s41467-018-04020-2
Beshkar F, Amiri O, Salehi Z. Synthesis of ZnSnO3 nanostructures by using novel gelling agents and their application in degradation of textile dye[J]. Sep. Purif. Technol, 2017,184:66-71. doi: 10.1016/j.seppur.2017.04.024
Guo R J, Tian R, Shi D L, Li H, Liu H Z. S-doped ZnSnO3 nanoparticles with narrow band gaps for photocatalytic wastewater treatment[J]. ACS Appl. Nano Mater, 2019,2(12):7755-7765. doi: 10.1021/acsanm.9b01804
Guo R J, Guo Y P, Duan H N, Li H, Liu H Z. Synthesis of orthorhombic perovskite-type ZnSnO3 single-crystal nanoplates and their application in energy harvesting[J]. ACS Appl. Mater. Interfaces, 2017,9(9):8271-8279. doi: 10.1021/acsami.6b16629
Lim W Y, Hong M H, Ho G W. In situ photo-assisted deposition and photocatalysis of ZnIn2S4/transition metal chalcogenides for enhanced degradation and hydrogen evolution under visible light[J]. Dalton Trans, 2016,45(2):552-560. doi: 10.1039/C5DT03775A
Han C, Yang M Q, Weng B, Xu Y J. Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon[J]. Chem. Chem. Phys, 2014,16(32):16891-16903. doi: 10.1039/C4CP02189D
PAN L F, YAN X, WANG C L, XIE M, LI Z, AI T, NIU Y H. Preparation and visible light photocatalytic activity of hollow tubular g-C3N4/Ag3PO4 composite catalyst[J]. Chinese J. Inorg. Chem, 2022,38(4):695-704.
Luo J H, Lin Z X, Zhao Y, Jiang S J, Song S Q. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle[J]. Chinese J. Catal, 2020,41(1):122-130. doi: 10.1016/S1872-2067(19)63490-X
Li H Q, Cui Y M, Hong W S, Xu B L. Enhanced photocatalytic activities of BiOI/ZnSn(OH)6 composites towards the degradation of phenol and photocatalytic H2 production[J]. Chem. Eng. J, 2013,228:1110-1120. doi: 10.1016/j.cej.2013.05.086
Wu T, Zhang Q, Hou Y, Wang L, Mao C Y, Zheng S T, Bu X H, Feng P Y. Monocopper doping in Cd-In-S supertetrahedral nanocluster via two-step strategy and enhanced photoelectric response[J]. J. Am. Chem. Soc, 2013,135(28):10250-10253. doi: 10.1021/ja404181c
Dhandole L K, Mahadik M A, Chung H S, Chae W C, Cho M, Jang J S. CdIn2S4 chalcogenide/TiO2 nanorod heterostructured photoanode: An advanced material for photoelectrochemical applications[J]. Appl. Surf. Sci, 2019,490:18-29. doi: 10.1016/j.apsusc.2019.05.222
Song J P, Yin P F, Mao J, Qiao S Z, Du X W. Catalytically active and chemically inert CdIn2S4 coating on a CdS photoanode for efficient and stable water splitting[J]. Nanoscale, 2017,9(19):6296-6301. doi: 10.1039/C7NR01170A
Zhang M Y, Hu Q Y, Ma K, Ding Y, Li C. Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution[J]. Nano Energy, 2020,73104810. doi: 10.1016/j.nanoen.2020.104810
Liao G F, Li C X, Liu S Y, Fang B Z, Yang H M. Emerging frontiers of Z-scheme photocatalytic systems[J]. Trends Chem, 2022,4(2):111-127. doi: 10.1016/j.trechm.2021.11.005
Li X Y, Sun H B, Xie Y Y, Liang Y S, Gong X M, Qin P F, Jiang L B, Guo J Y, Liu C, Wu Z B. Principles, synthesis and applications of dual Z-scheme photocatalysts[J]. Coord. Chem. Rev, 2022,467214596. doi: 10.1016/j.ccr.2022.214596
Wang S, Zhu B C, Liu M J, Zhang L Y, Yu J G, Zhou M H. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Appl. Catal. B-Environ, 2019,243:19-26. doi: 10.1016/j.apcatb.2018.10.019
Dong S Y, Cui L F, Zhang W, Xia L J, Zhou S J, Russell C K, Fan M H, Feng J L, Sun J H. Double-shelled ZnSnO3 hollow cubes for efficient photocatalytic degradation of antibiotic wastewater[J]. Chem. Eng. J, 2020,384123279. doi: 10.1016/j.cej.2019.123279
Peng Z Y, Jiang Y H, Xiao Y, Xu H Q, Zhang W L, Ni L. CdIn2S4 surface-decorated Ta3N5 core-shell heterostructure for improved spatial charge transfer: In-situ growth, synergistic effect and efficient dual-functional photocatalytic performance[J]. Appl. Surf. Sci, 2019,487:1084-1095. doi: 10.1016/j.apsusc.2019.05.163
Li X, Jiang H P, Ma C C, Zhu Z, Song X H, Li X Y, Wang H Q, Huo P W, Chen X B. Construction of a multi-interfacial-electron transfer scheme for efficient CO2 photoreduction: A case study using CdIn2S4 micro-flower spheres modified with Au nanoparticles and reduced graphene oxide[J]. J. Mater. Chem. A, 2020,8(36):18707-18714. doi: 10.1039/D0TA06602H
Wu H J, Li C M, Che H N, Hu H, Hu W, Liu C B, Ai J Z, Dong H J. Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g-C3N4 to construct Z-scheme system for improving photocatalytic performance.[J]. Appl. Surf. Sci, 2018,440:308-319. doi: 10.1016/j.apsusc.2018.01.134
Chong W K, Ng B J, Kong X Y, Tan L L, Putri L K, Chai S P. Nonmetal doping induced dual p-n charge properties in a single ZnIn2S4 crystal structure provoking charge transfer behaviors and boosting photocatalytic hydrogen generation[J]. Appl. Catal. B-Environ, 2023,325122372. doi: 10.1016/j.apcatb.2023.122372
Deng D, Lee J Y. Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage[J]. Chem. Mater, 2008,20(5):1841-1846. doi: 10.1021/cm7030575
Zhang Y C, Du Z N, Li K W, Zhang M, Dionysiou D D. High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS2 nanoparticles[J]. ACS Appl. Mater. Interfaces, 2011,3(5):1528-1537. doi: 10.1021/am200102y
Li S S, Wang L, Li Y D, Zhang L H, Wang A X, Xiao N, Gao Y Q, Li N, Song W Y, Ge L, Liu J. Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution[J]. Appl. Catal. B-Environ, 2019,254:145-155. doi: 10.1016/j.apcatb.2019.05.001
Dai M, He Z L, Zhang P, Li X, Wang S G. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution[J]. J. Mater. Sci. Technol, 2022,122:231-242. doi: 10.1016/j.jmst.2022.02.014
Zhang J Y, Wang Y H, Jin J, Zhang J, Zhang L, Huang F, Yu J G. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires[J]. ACS Appl. Mater. Interfaces, 2013,5(20):10317-10324. doi: 10.1021/am403327g
Shen H Q, Wang J X, Jiang J H, Luo B F, Mao B D, Shi W D. All-solid-state Z-scheme system of RGO-Cu2O/Bi2O3 for tetracycline degradation under visible-light irradiation[J]. Chem. Eng. J, 2017,313:508-517. doi: 10.1016/j.cej.2016.11.161
Li C M, Yu S Y, Wang Y, Han J, Dong H J, Chen G. Fabrication, physicochemical properties and photocatalytic activity of Ag0.68V2O5hierarchical architecture assembled by ultrathin nanosheets[J]. J. Taiwan Inst. Chem. Eng, 2018,87:272-280. doi: 10.1016/j.jtice.2018.03.055
Chen F, Li D, Luo B F, Chen M, Shi W D. Two-dimensional hetero-junction photocatalysts constructed by graphite-like C3N4 and Bi2WO6 nanosheets: Enhanced photocatalytic activities for water purification[J]. J. Alloy. Compd, 2017,694:193-200. doi: 10.1016/j.jallcom.2016.09.326
Reddy D, Kim E H, Gopannagari M, Ma R, Bhavaniet P, Kumar D, Kim T K. Enhanced photocatalytic hydrogen evolution by integrating dual co-catalysts on heterophase CdS nano-junctions[J]. ACS Sustain. Chem. Eng, 2018,6(10):12835-12844. doi: 10.1021/acssuschemeng.8b02098
Zou Y J, Shi J W, Ma D D, Fan Z Y, Niu C M, Wang L Z. Fabrication of g-C3N4/Au/C-TiO2 hollow structure as visible-light-driven Z-scheme photocatalyst with enhanced photocatalytic H2 evolution[J]. ChemCatChem, 2017,9(19):3752-3761. doi: 10.1002/cctc.201700542
Chen X B, Shen S H, Guo L J, Mao S S. Semiconductor-based photocatalytic hydrogen generation[J]. Chem. Rev, 2010,110(11):6503-6570. doi: 10.1021/cr1001645
Ren Y Y, Li Y, Wu X Y, Wang J L, Zhang G K. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance[J]. Chinese J. Catal, 2021,42(1):69-77. doi: 10.1016/S1872-2067(20)63631-2
Xie Q, He W M, Liu S W, Li C H, Zhang J F, Wong P K. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling[J]. Nat. Commun, 2020,41(1):140-153.
Xu F Y, Meng K, Cheng B, Wang S Y, Xu J S, Yu J G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nat. Commun, 2020,11(1)4613. doi: 10.1038/s41467-020-18350-7
Muradov N Z, Rustamov M I, Guseinova A D, Bazhutin Y V. Photocatalytic production of hydrogen from H2S solutions over CdS/Pt colloids[J]. React. Kinet. Catal. Lett, 1987,33(2):279-283. doi: 10.1007/BF02128076
Wen Y H, Zhang H M, Qian P, Zhou H T, Zhao P, Yi B L, Yang Y S. A study of the Fe(Ⅲ)/Fe(Ⅱ)-triethanolamine complex redox couple for redox flow battery application[J]. Electrochim. Acta, 2006,51(18):3769-3775. doi: 10.1016/j.electacta.2005.10.040
Berr M J, Wagner P, Fischbach S, Vaneski A, Schneider J. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation[J]. Appl. Phys. Lett, 2012,100(22)223903. doi: 10.1063/1.4723575
Lin W C, Jayakumar J, Chang C L, Ting L Y, Elsayed M H, Abdellah M, Zheng K B, Elewa A M, Lin Y T, Liu J J, Wang W S, Lu C Y, Chou H H. Effect of energy bandgap and sacrificial agents of cyclo-pentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution[J]. Appl. Catal. B-Environ, 2021,298120577. doi: 10.1016/j.apcatb.2021.120577
Xia P F, Cao S W, Zhu B C, Liu M j, Shi M S, Yu J G, Zhang Y F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angew. Chem. Int. Ed, 2020,59(13):5218-5225. doi: 10.1002/anie.201916012
Jia X M, Han Q F, Liu H Z, Li S Z, Bi H P. A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1-xBrx heterojunction with enhanced visible-light photocatalytic activity[J]. Chem. Eng. J, 2020,399125701. doi: 10.1016/j.cej.2020.125701
Wang C T, Dang Y C, Pang X X, Zhang L, Bian Y J, Duan W, Yang C M, Zhen Y Z, Fu F. A novel S-scheme heterojunction based on 0D/3D CeO2/Bi2O2CO3 for the photocatalytic degradation of organic pollutants[J]. New J. Chem, 2022,4615987. doi: 10.1039/D2NJ03192B
Wang Y X, Yang C M, Guo L, Yang Z X, Jin B B, Du R, Fu F, Wang D J. Plate-on-plate structured MoS2/Cd0.6Zn0.4S Z-scheme heterostructure with enhanced photocatalytic hydrogen production activity via hole sacrificial agent synchronously strengthen half-reactions.[J]. J. Colloid Interface Sci, 2023,630:341-351. doi: 10.1016/j.jcis.2022.10.053
Xingmin Chen , Yunyun Wu , Yao Tang , Peishen Li , Shuai Gao , Qiang Wang , Wen Liu , Sihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Rongxin Zhu , Shengsheng Yu , Xuanzong Yang , Ruyu Zhu , Hui Liu , Kaikai Niu , Lingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159