Citation: Ying WANG, Rui XUE, Sheng-Li HUANG, Guo-Yu YANG. Luminescent heterobimetallic probes for selectively locating DNA in the nucleus and mitochondria of live cells[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1463-1470. doi: 10.11862/CJIC.2023.124 shu

Luminescent heterobimetallic probes for selectively locating DNA in the nucleus and mitochondria of live cells

Figures(4)

  • Nucleus probes for real-time imaging of DNA in live cells are very rare. Herein, the combined use of Ru(N^N)3, Ir(C^N)2(N^N), Re(CO)3Cl(N^N), and Pt(C^N)(N^N) produced four heterobimetallic complexes. Two different functional metal sites are arranged at both ends of linear bis-chelating linkers (N^N)-(N^N), leading to asymmetric dumbbell-like molecules M1-M2, namely, Ru-Re, Ru-Pt, Ir-Re, and Ir-Pt. The red emissive probes of Ru-Re and Ru-Pt offer the benefits of large Stokes shift, excellent nucleus membrane penetration, and DNA binding ability with good photostability. Moreover, DNA imaging of Ru-Re and Ru-Pt probes was comparable to the commercial dye of Hoechst 33342 which is specially used for staining DNA in the nucleus of live cells. However, the Ir-based probes of Ir-Re and Ir-Pt directly targeted mitochondria. The emission properties and selective intracellular localizations of different probes are highly dependent on the metal species used in the heterobimetallic complexes.
  • 加载中
    1. [1]

      Zeraati M, Langley D B, Schofield P, Moye A L, Rouet R, Hughes W E, Bryan T M, Dinger M E, Christ D. I-motif DNA structures are formed in the nuclei of human cells[J]. Nat. Chem., 2018,10:631-637. doi: 10.1038/s41557-018-0046-3

    2. [2]

      Wu Z K, Fan H H, Satyavolu N S R, Wang W J, Lake R, Jiang J H, Lu Y. Imaging endogenous metal ions in living cells using a DNAzyme-catalytic hairpin assembly probe[J]. Angew. Chem. Int. Ed., 2017,56:8721-8725. doi: 10.1002/anie.201703540

    3. [3]

      Peng X J, Wu T, Fan J L, Wang J Y, Zhang S, Song F L, Sun S G. An effective minor groove binder as a red fluorescent marker for live-cell DNA imaging and quantification[J]. Angew. Chem. Int. Ed., 2011,50:4266-4269.

    4. [4]

      Rieder U, Luedtke N W. Alkene-tetrazine ligation for imaging cellular DNA[J]. Angew. Chem. Int. Ed., 2014,53:9322-9326.

    5. [5]

      Zhang L, Chu M G, Ji C L, Wei J W, Yang Y B, Huang Z N, Tan W H, Tan J, Yuan Q. In situ visualization of epidermal growth factor receptor nuclear translocation with circular bivalent aptamer[J]. Anal. Chem., 2022,94(50):17413-17421. doi: 10.1021/acs.analchem.2c02762

    6. [6]

      Zeng W, Lin M H, Zhu L Y, Lin M J. A triphenylphosphonium functionalized AIE conjugated macrocyclic tetramaleimide for mitochondrial-targeting bioimaging[J]. Chin. J. Chem., 2022,40(1):39-45. doi: 10.1002/cjoc.202100580

    7. [7]

      Huang H, Yu B, Zhang P Y, Huang J J, Chen Y, Gasser G, Ji L N, Chao H. Highly charged ruthenium(Ⅱ) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy[J]. Angew. Chem. Int. Ed., 2015,54:14255-14258.

    8. [8]

      Liu J P, Zhang C, Rees T W, Ke L B, Ji L N, Chao H. Harnessing ruthenium(Ⅱ) as photodynamic agents: Encouraging advances in cancer therapy[J]. Coord. Chem. Rev., 2018,363:17-28. doi: 10.1016/j.ccr.2018.03.002

    9. [9]

      Wang J, Xue J, Yan Z, Zhang S C, Qiao J, Zhang X R. Photoluminescence lifetime imaging of synthesized proteins in living cells using an iridium-alkyne probe[J]. Angew. Chem. Int. Ed., 2017,56:14928-14932. doi: 10.1002/anie.201708566

    10. [10]

      OUYANG A, LUO Y H, LU N, HU R T, ZHANG P Y, ZHANG Q L. Viscosity responsive and mitochondria targeted iridium(Ⅲ) complexes for photodynamic therapy of tumors[J]. Chinese J. Inorg. Chem., 2021,37(3):401-411.  

    11. [11]

      CHEN X, LI S Y, WANG Y, WU W N, CHEN Z. A Schiff base fluorescent probe for Al3+: Synthesis and application in living cells imaging[J]. Chinese J. Inorg. Chem., 2022,38(10):1993-1998. doi: 10.11862/CJIC.2022.190

    12. [12]

      Huang S L, Jia A Q, Jin G X. Pd(diimine)Cl2 embedded heterometallic compounds with porous structures as efficient heterogeneous catalysts[J]. Chem. Commun., 2013,49:2403-2405. doi: 10.1039/c3cc38714c

    13. [13]

      Plecnik C E, Liu S, Shore S G. Lanthanide-transition-metal complexes: From ion pairs to extended arrays[J]. Acc. Chem. Res., 2003,36:499-508. doi: 10.1021/ar010050o

    14. [14]

      Szeto K C, Kongshaug K O, Jakobsen S, Tilset M, Lillerud K P. Design, synthesis and characterization of a Pt-Gd metal-organic framework containing potentially catalytically active sites[J]. Dalton Trans., 2008(15):2054-2060. doi: 10.1039/b719766g

    15. [15]

      Tan Y X, Yang X, Li B B, Yuan D Q. Rational design of a flu-type heterometallic cluster-based Zr-MOF[J]. Chem. Commun., 2016,52:13671-13674. doi: 10.1039/C6CC08191F

    16. [16]

      Kobayashi A, Suzuki Y, Ohba T, Noro S I, Chang H C, Kato M. Ln-Co-based rock-salt-type porous coordination polymers: Vapor response controlled by changing the lanthanide ion[J]. Inorg. Chem., 2011,50:2061-2063. doi: 10.1021/ic102361d

    17. [17]

      Huang S L, Jin G X. Selective CO2 capture by a 3d-4d coordination polymer material with 1D channel[J]. CrystEngComm, 2011,13:6013-6016. doi: 10.1039/c1ce05474k

    18. [18]

      Huang S L, Lin Y J, Hor T S A, Jin G X. Cp*Rh-based heterometallic metallarectangles: size-dependent borromean link structures and catalytic acyl transfer[J]. J. Am. Chem. Soc., 2013,135:8125-8128. doi: 10.1021/ja402630g

    19. [19]

      Huang S L, Liu N, Ling Y, Luo H K. Ir-based octahedral metalloligands derived primitive cubic frameworks for enhanced CO2/N2 separation[J]. Chem.-Asian J., 2017,12:3110-3113. doi: 10.1002/asia.201701339

    20. [20]

      Huang S L, Hor T S A, Jin G X. Metallacyclic assembly of interlocked superstructures[J]. Coord. Chem. Rev., 2017,333:1-26. doi: 10.1016/j.ccr.2016.11.009

    21. [21]

      Huang S L, Lin Y J, Li Z H, Jin G X. Self-assembly of molecular borromean rings from bimetallic coordination rectangles[J]. Angew. Chem. Int. Ed., 2014,53:11400-11404.

    22. [22]

      Burke C S, Byrne A, Keyes T E. Highly selective mitochondrial targeting by a ruthenium(Ⅱ) peptide conjugate: Imaging and photoinduced damage of mitochondrial DNA[J]. Angew. Chem. Int. Ed., 2018,57:12420-12424. doi: 10.1002/anie.201806002

    23. [23]

      Lai P, Brysacz C H, Alam M K, Ayoub N A, Gray T G, Bao J M, Teets T S. Highly efficient red-emitting bis-cyclometalated iridium complexes[J]. J. Am. Chem. Soc., 2018,140:10198-10207. doi: 10.1021/jacs.8b04841

    24. [24]

      Hedstrom S, Chaudhuri S, Porte N T L, Rudshteyn B, Martinez J F, Wasielewski M R, Batista V S. Thousandfold enhancement of photoreduction lifetime in Re(bpy)(CO)3 via spin-dependent electron transfer from a perylenediimide radical anion donor[J]. J. Am. Chem. Soc., 2017,139:16466-16469. doi: 10.1021/jacs.7b09438

    25. [25]

      Ma D, Che C, Yan S. Platinum(Ⅱ) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA[J]. J. Am. Chem. Soc., 2009,131:1835-1846. doi: 10.1021/ja806045x

    26. [26]

      Chen Y, Guan R, Zhang C, Huang J J, Ji L N, Chao H. Two-photon luminescent metal complexes for bioimaging and cancer phototherapy[J]. Coord. Chem. Rev., 2016,310:16-40. doi: 10.1016/j.ccr.2015.09.010

    27. [27]

      Baggaley E, Gill M R, Green N H, Turton D, Sazanovich I V, Botchway S W, Smythe C, Haycock J W, Weinstein J A, Thomas J A. Dinuclear ruthenium(Ⅱ) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA[J]. Angew. Chem. Int. Ed., 2014,53:3435-3439.

    28. [28]

      Holmberg R C, Thorp H H. Digital simulation of catalytic cyclic voltammograms for oxidation of DNA by a heterobimetallic dimer: Effects of DNA binding and mass transport[J]. Anal. Chem., 2003,75:1851-1860. doi: 10.1021/ac0204653

    29. [29]

      Wragg A, Gill M R, Turton D, Adams H, Roseveare T M, Smythe C, Su X D, Thomas J A. Tuning the cellular uptake properties of luminescent heterobimetallic iridium(Ⅲ)-ruthenium(Ⅱ) DNA imaging probes[J]. Chem.-Eur. J., 2014,20:14004-14011. doi: 10.1002/chem.201403693

    30. [30]

      Yam V W W, Lo K K W, Cheung K K, Kong R Y C. Deoxyribonucleic acid binding and photocleavage studies of rhenium(Ⅰ) dipyridophenazine complexes[J]. J. Chem. Soc.-Dalton Trans., 1997(12):2067-2072. doi: 10.1039/a700828g

    31. [31]

      Gill M R, Derrat H, Smythe C G W, Battaglia G, Thomas J A. Ruthenium(Ⅱ) metallo-intercalators: DNA imaging and cytotoxicity[J]. ChemBioChem, 2011,12:877-880. doi: 10.1002/cbic.201000782

    32. [32]

      Gill M R, Garcia-Lara J, Foster S J, Smythe C, Battaglia G, Thomas J A. A ruthenium(Ⅱ) polypyridyl complex for direct imaging of DNA structure in living cells[J]. Nat. Chem., 2009,1:662-667. doi: 10.1038/nchem.406

    33. [33]

      Liu S, Liang H, Zhang K Y, Zhao Q, Zhou X B, Xu W J, Huang W. A multifunctional phosphorescent iridium(Ⅲ) complex for specific nucleus staining and hypoxia monitoring[J]. Chem. Commun., 2015,51:7943-7946. doi: 10.1039/C5CC01978H

    34. [34]

      Ziegler H K, Unanue E R. Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells[J]. Proc. Natl. Acad. Sci. U. S. A., 1982,79:175-178. doi: 10.1073/pnas.79.1.175

    35. [35]

      Nicol A, Qin W, Kwok R T K, Burkhartsmeyer J M, Zhu Z F, Su H F, Luo W W, Lam J W Y, Qian J, Wong K S, Tang B Z. Functionalized AIE nanoparticles with efficient deep-red emission, mitochondrial specificity, cancer cell selectivity and multiphoton susceptibility[J]. Chem. Sci., 2017,8:4634-4643. doi: 10.1039/C7SC00908A

    36. [36]

      Xu W, Zeng Z B, Jiang J H, Chang Y T, Yuan L. Discerning the chemistry in individual organelles with small-molecule fluorescent probes[J]. Angew. Chem. Int. Ed., 2016,55:13658-13699. doi: 10.1002/anie.201510721

    37. [37]

      Yuan Y Y, Xu S D, Zhang C J, Liu B. Light-responsive AIE nanoparticles with cytosolic drug release to overcome drug resistance in cancer cells[J]. Polym. Chem., 2016,7:3530-3539. doi: 10.1039/C6PY00449K

  • 加载中
    1. [1]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    2. [2]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    3. [3]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    4. [4]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    5. [5]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    6. [6]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    7. [7]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    8. [8]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    9. [9]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    10. [10]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    11. [11]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    12. [12]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    13. [13]

      Zhiyu YuXiang LuoCheng ZhangXin LuXiaohui LiPan LiaoZhongqiu LiuRong ZhangShengtao WangZhiqiang YuGuochao Liao . Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chinese Chemical Letters, 2024, 35(10): 109519-. doi: 10.1016/j.cclet.2024.109519

    14. [14]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    15. [15]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    16. [16]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    17. [17]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    18. [18]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    19. [19]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    20. [20]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

Metrics
  • PDF Downloads(2)
  • Abstract views(755)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return