Citation: Xiao-Qin CUI, Dian-Hui WANG, Xin LI, Yu-Xin WANG, Ting LI, Jing DOND, Huan LI. Competitive coordination in 2-nitro benzoate protected one-dimensional Co(Ⅱ)/Zn(Ⅱ) complexes[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1579-1586. doi: 10.11862/CJIC.2023.121 shu

Competitive coordination in 2-nitro benzoate protected one-dimensional Co(Ⅱ)/Zn(Ⅱ) complexes

Figures(5)

  • Using tris(acetylacetonato)cobalt(Ⅲ) (Co(acac)3) and zinc(Ⅱ) acetylacetonate (Zn(acac)2) as precursors and 2-nitrobenzoic acid (2-nbaH) as ligand, three 1D complexes [Co(H2O)(2-nba)2]n (Co-1), [Co3(2-nba)4(acac)2]n (Co-2), and [Zn2(2-nba)4]n (Zn-3) were obtained by solvothermal reaction in toluene. The complexes were characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, and UV-Vis diffuse reflectance spectroscopy. In complex Co-1, each Co2+ ion is coordinated by two bridged water molecules and four 2-nba- ions to form an octahedron geometry. When 2-nba- was not sufficient, the acac- ligands from the precursor were involved in the bonding with Co2+, leading to another 1D complex Co-2 with a different local structure. Most prominent is that two-thirds of the Co2+ ions in Co-2 are pentagonal triangular-dipyramid, while the other one-third is similar to that of Co-1. The synthetic method for Co was also successfully applied to Zn(acac)2 to give a 1D zigzag-shaped Zn-3. In complex Zn-3, the Zn2+ ions exhibited the {ZnO4} tetrahedral geometry protected only by 2-nba- ions. The results show that the competitive coordination between 2-nba- and acac- can significantly affect the coordination environment of Co2+ ions.
  • 加载中
    1. [1]

      Nadurata V L, Boskovic C. Switching metal complexes via intramolecular electron transfer: Connections with solvatochromism[J]. Inorg. Chem. Front., 2021,8(7):1840-1864. doi: 10.1039/D0QI01490G

    2. [2]

      Seo J S, Whang D, Lee H, Jun S I, Oh J, Jeon Y J, Kim K. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000,404(6781):982-986. doi: 10.1038/35010088

    3. [3]

      Salassa G, Coenen M J J, Wezenberg S J, Hendriksen B L M, Speller S, Elemans J A A W, Kleij A W. Extremely strong self-assembly of a bimetallic salen complex visualized at the single-molecule level[J]. J. Am. Chem. Soc., 2012,134(16):7186-7192. doi: 10.1021/ja3030802

    4. [4]

      Han Y F, Jin G X. Cyclometalated [Cp*M(C^X)] (M = Ir, Rh; X = N, C, O, P) complexes[J]. Chem. Soc. Rev., 2014,43(8):2799-2823. doi: 10.1039/C3CS60343A

    5. [5]

      Mazzoni R, Roncaglia F, Rigamonti L. When the metal makes the difference: template syntheses of tridentate and tetradentate salen-type Schiff base ligands and related complexes[J]. Crystals, 2021,11(5)483. doi: 10.3390/cryst11050483

    6. [6]

      Alfonso-Herrera L A, Rosete-Luna S, Hernández-Romero D, Rivera-Villanueva J M, Olivares-Romero J L, Cruz-Navarro J A, Soto-Contreras A, Arenaza-Corona A, Morales-Morales D, Colorado-Peralta R. Transition metal complexes with tridentate Schiff bases (O N O and O N N) derived from salicylaldehyde: An analysis of their potential anticancer activity[J]. ChemMedChem, 2022,17(20)e202200367.

    7. [7]

      Lin C Y, Power P P. Complexes of Ni(Ⅰ): A "rare" oxidation state of growing importance[J]. Chem. Soc. Rev., 2017,46(17):5347-5399. doi: 10.1039/C7CS00216E

    8. [8]

      Bellemin-Laponnaz S, Dagorne S. Group 1 and 2 and early transition metal complexes bearing N-heterocyclic carbene ligands: Coordination chemistry, reactivity, and applications[J]. Chem. Rev., 2014,114(18):8747-8774. doi: 10.1021/cr500227y

    9. [9]

      CHEN M Z, CHEN J X, WANG R L, LU J X, XU X F. Synthesis, crystal structures, and DNA interaction of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) complexes derived from zwitterionic carboxylate ligand[J]. Chinese J. Inorg. Chem., 2022,38(12):2499-2510. doi: 10.11862/CJIC.2022.241 

    10. [10]

      Das B, Rahaman A, Shatskiy A, Verho O, Kärkäs M D, Åkermark B. The impact of ligand carboxylates on electrocatalyzed water oxidation[J]. Acc. Chem. Res., 2021,54(17):3326-3337. doi: 10.1021/acs.accounts.1c00298

    11. [11]

      James S L. Metal-organic frameworks[J]. Chem. Rev., 2003,32(5):276-288.

    12. [12]

      Murugavel R, Walawalkar M G, Dan M, Roesky H W, Rao C N R. Transformations of molecules and secondary building units to materials: A bottom-up approach[J]. Acc. Chem. Res., 2004,37(10):763-774. doi: 10.1021/ar040083e

    13. [13]

      Cohen S M. Postsynthetic methods for the functionalization of metal-organic frameworks[J]. Chem. Rev., 2012,112(2):970-1000. doi: 10.1021/cr200179u

    14. [14]

      Yoshinari N, Konno T. Multitopic metal-organic carboxylates available as supramolecular building units[J]. Coord. Chem. Rev., 2023,474214850. doi: 10.1016/j.ccr.2022.214850

    15. [15]

      Jiang J C, Yaghi O M. Brønsted acidity in metal-organic frameworks[J]. Chem. Rev., 2015,115(14):6966-6997. doi: 10.1021/acs.chemrev.5b00221

    16. [16]

      Schubert U. Clusters with a Zr6O8 core[J]. Coord. Chem. Rev., 2022,469214686. doi: 10.1016/j.ccr.2022.214686

    17. [17]

      Kuznetsova A, Matveevskaya V, Pavlov D, Yakunenkov A, Potapov A. Coordination polymers based on highly emissive ligands: Synthesis and functional properties[J]. Materials, 2020,13(12)2699. doi: 10.3390/ma13122699

    18. [18]

      Schlachter A, Tanner K, Harvey P D. Copper halide-chalcogenoether and -chalcogenone networks: Chain and cluster motifs, polymer dimensionality and photophysical properties[J]. Coord. Chem. Rev., 2021,448214176. doi: 10.1016/j.ccr.2021.214176

    19. [19]

      Hosseinzadeh B, Ahmadi M. Coordination geometry in metallo-supramolecular polymer networks[J]. Coord. Chem. Rev., 2022,471214733. doi: 10.1016/j.ccr.2022.214733

    20. [20]

      Tian Z F, Moorthy S, Xiang H, Peng P, You M L, Zhang Q, Yang S Y, Zhang Y L, Wu D Q, Singh S K, Shao D. Tuning chain topologies and magnetic anisotropy in one-dimensional cobalt(Ⅱ) coordination polymers via distinct dicarboxylates[J]. CrystEngComm, 2022,24(21):3928-3937. doi: 10.1039/D2CE00437B

    21. [21]

      Zhu Z, Xu C G, Wang M, Zhang X, Wang H, Luo Q D, Bi S Y, Fan Y H. Six Co(Ⅱ) coordination polymers based on two isomeric semirigid ether-linked aromatic tetracarboxylate acid: Syntheses, structural comparison, and magnetic properties[J]. Cryst. Growth Des., 2017,17(10):5533-5543. doi: 10.1021/acs.cgd.7b01070

    22. [22]

      Gutschke S O H, Price D J, Powell A K, Wood P T. Hydrothermal synthesis, structure, and magnetism of [Co2(OH){1, 2, 3-(O2C)3C6H3}(H2O)]·H2O and [Co2(OH){1, 2, 3-(O2C)3C6H3}]: Magnetic Δ-chains with mixed cobalt geometries[J]. Angew. Chem. Int. Ed., 2001,40(10):1920-1923. doi: 10.1002/1521-3773(20010518)40:10<1920::AID-ANIE1920>3.0.CO;2-2

    23. [23]

      Guo C L, Zhuo X, Li Y Z, Zheng H G. Synthesis, crystal structures, and fluorescence properties of six complexes with thiophene derivative carboxylic acid ligand[J]. Inorg. Chim. Acta, 2009,362(2):491-501. doi: 10.1016/j.ica.2008.04.044

    24. [24]

      Yambulatov D S, Voronina J K, Goloveshkin A S, Svetogorov R D, Veber S L, Efimov N N, Matyukhina A K, Nikolaevskii S A, Eremenko I L, Kiskin M A. Change in the electronic structure of the cobalt(Ⅱ) ion in a one-dimensional polymer with flexible linkers induced by a structural phase transition[J]. Int. J. Mol. Sci., 2023,24(1)215.

    25. [25]

      HUANG R Q, LIU Z, WANG S, YU C L, WEI R Z, TANG Q. Synthesis, crystal structure, and properties of manganese/cobalt complexes based on 2, 5-dibromoterephthalic acid ligands[J]. Chinese J. Inorg. Chem., 2013,39(1):159-167.  

    26. [26]

      Sharma R P, Saini A, Kumar S, Venugopalan P, Ferretti V. Isolation of two rare aqua-bridged zigzag copper(Ⅱ) coordination polymers: syntheses, characterization and X-ray structures of [Cu(2-bromobenzoate)2(β/γ-picoline)2(μ-H2O)]n[J]. J. Mol. Struct., 2014,1060(1):256-263.

    27. [27]

      de Almeida F B, da Silva Cunha M, Barros W P, De Abreu H A, Diniz R. Structure, electronic, magnetic, and gas adsorption properties of zinc(Ⅱ) and cobalt(Ⅱ) coordination polymers assembled from isonicotinylhydrazine and trimesic acid[J]. J. Phys. Chem. C, 2020,124(38):21103-21112. doi: 10.1021/acs.jpcc.0c06479

    28. [28]

      Novitchi G, Shova S, Train C. Investigation by chemical substitution within 2p-3d-4f clusters of the cobalt(Ⅱ) role in the magnetic behavior of [vdCoLn]2 (vd = verdazyl radical)[J]. Inorg. Chem. Commun., 2022,61(43):17037-17048. doi: 10.1021/acs.inorgchem.2c01742

    29. [29]

      Lin J G, Qiu L, Cheng W, Luo S N, Wang K, Meng Q J. A novel cobalt(Ⅱ) complex based on nicotinamide and 2-nitrobenzoate mixed ligands: Synthesis, characterization, and biological activity[J]. Inorg. Chem. Commun., 2010,13(7):855-858. doi: 10.1016/j.inoche.2010.04.013

    30. [30]

      Gu J Z, Cai Y, Qian Z Y, Wen M, Shi Z F, Lv D Y, Kirillov A M. A new series of Co, Ni, Zn, and Cd metal-organic architectures driven by an unsymmetrical biphenyl-tricarboxylic acid: Hydrothermal assembly, structural features and properties[J]. Dalton Trans., 2018,47(22):7431-7444. doi: 10.1039/C8DT01299G

    31. [31]

      Aakeröy C B, Schultheiss N, Desper J. Directed supramolecular assembly of Cu(Ⅱ)-based "paddlewheels" into infinite 1-D chains using structurally bifunctional ligands[J]. Dalton Trans., 2006(13):1627-1635. doi: 10.1039/B513765A

    32. [32]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    33. [33]

      Danopoulos A A, Braunstein P, Monakhov K Y, van Leusen J, Kögerler P, Clémancey M, Latour J M, Benayad A, Tromp M, Rezabal E, Frison G. Heteroleptic, two-coordinate [M(NHC){N(SiMe3)2}] (M = Co, Fe) complexes: Synthesis, reactivity and magnetism rationalized by an unexpected metal oxidation state[J]. Dalton Trans., 2017,46(4):1163-1171. doi: 10.1039/C6DT03565E

    34. [34]

      Meng W, Qin Y, Hou Q Q, He W J, Li J, Xu F. Dinuclear cage-core [Co2]/[Ni2] oxo-clusters supported by Sb(Ⅲ) tartrate scaffolds: Synthesis, structure and magnetic properties[J]. Polyhedron, 2018,153:76-81. doi: 10.1016/j.poly.2018.06.045

    35. [35]

      Pyykkö P, Atsumi M. Molecular double-bond covalent radii for elements Li-E112[J]. Chem.-Eur. J., 2009,15(46):12770-12779. doi: 10.1002/chem.200901472

    36. [36]

      Pyykkö P, Riedel S, Patzschke M. Triple-bond covalent radii[J]. Chem.-Eur. J., 2005,11(12):3511-3520. doi: 10.1002/chem.200401299

    37. [37]

      Khranenko S P, Bykova E А, Gromilov S А, Gallyamov M R, Kozlova S G, Moroz N K, Kоrenev S V. Novel mixed-ligand palladium complexes [Pd2(acac)3NO3] and [Pd(acac)NO3]n involving O, O- and γ-C-bonded acetylacetonate linkers[J]. Polyhedron, 2012,31(1):272-277. doi: 10.1016/j.poly.2011.09.026

    38. [38]

      Hey D A, Sauer M J, Fischer P J, Esslinger E M H J, Kühn F E, Baratta W. Acetate acetylacetonate ampy ruthenium(Ⅱ) complexes as efficient catalysts for ketone transfer hydrogenation[J]. ChemCatChem, 2020,12(13):3537-3544. doi: 10.1002/cctc.202000542

    39. [39]

      Langley S K, Chilton N F, Moubaraki B, Murray K S. Single-molecule magnetism in {Co2Dy2}-amine-polyalcohol-acetylacetonate complexes: Effects of ligand replacement at the Dy Sites on the dynamics of magnetic relaxation[J]. Inorg. Chem. Front., 2015,2(9):867-875. doi: 10.1039/C5QI00076A

    40. [40]

      Kumar S, Sharma R P, Saini A, Venugopalan P, Ferretti V. Design and construction of two rare aqua bridged copper(Ⅱ) coordination polymers through mixed ligand strategy: Synthesis, characterization and single crystal X-ray structure determination of [Cu(2-iodobenzoate)2(β/γ-picoline)2(μ-H2O)]n[J]. J. Mol. Struct., 2015,1083:398-404. doi: 10.1016/j.molstruc.2014.11.017

    41. [41]

      Krinchampa P, Chainok K, Phengthaisong S, Youngme S, Kielar F, Wannarit N. A novel one-dimensional double-chain-like Zn coordination polymer: Poly[bis(1-benzyl-1H-imidazole-κN3)tris(μ-cyanido-κ2C: N)(cyanido-κC)disilver(Ⅰ)zinc(Ⅱ)][J]. Acta Crystallogr. Sect. C, 2016,C72(12):960-965.  

    42. [42]

      Xu L C, Zhu B Y. Syntheses and characterization of two Cd(Ⅱ) coordination polymers based on mixed flexible ligands[J]. J. Inorg. Organomet. Polym. Mater., 2016,26(1):264-269. doi: 10.1007/s10904-015-0306-2

    43. [43]

      Banerjee S, Rajakannu P, Butcher R, Murugavel R. Auxiliary ligand-aided tuning of aggregation of transition metal benzoates: Isolation of four different types of coordination polymers[J]. CrystEngComm, 2014,16(36):8429-8441. doi: 10.1039/C4CE01043D

  • 加载中
    1. [1]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    2. [2]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    3. [3]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    6. [6]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    9. [9]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    10. [10]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    11. [11]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    14. [14]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    15. [15]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    16. [16]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    17. [17]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    18. [18]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    19. [19]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    20. [20]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

Metrics
  • PDF Downloads(7)
  • Abstract views(832)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return