Citation: Xu-Feng LIU, Bo XU, Hang XU, Yu-Long LI. Synthesis, characterization, and electrocatalytic hydrogen evolution of diiron dithiolato pentacarbonyl complexes bearing phosphine ligand[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1619-1627. doi: 10.11862/CJIC.2023.117 shu

Synthesis, characterization, and electrocatalytic hydrogen evolution of diiron dithiolato pentacarbonyl complexes bearing phosphine ligand

  • Corresponding author: Xu-Feng LIU, nkxfliu@126.com
  • Received Date: 9 December 2022
    Revised Date: 7 May 2023

Figures(9)

  • In this work, four diiron dithiolato pentacarbonyl complexes with phosphine ligands were synthesized and structurally characterized. The starting complex [Fe2(CO)6(μ-SCH2CH(CH2OOCH)S)] (1) reacted with triphenylphosphine, tricyclohexylphosphine, tris(2-methoxyphenyl)phosphine, or tris(4-(trifluoromethyl)phenyl)phosphine and Me3NO·2H2O as the decarbonylation agent to produce the target products [Fe2(CO)5(L)(μ-SCH2CH(CH2OOCH)S)] (L=PPh3 (2), PCy3 (3), P(2-C6H4OCH3)3 (4), P(4-C6H4CF3)3 (5)) in 59%-88% yields. Complexes 2-5 have been characterized by elemental analysis, IR, and NMR spectroscopy, together with single-crystal X-ray diffraction analysis. Electrochemical studies have revealed that complexes 1-5 could electro-catalyze the reduction of proton to hydrogen and complex 1 had better catalytic efficiency than other complexes.
  • 加载中
    1. [1]

      Han Z J, Qiu F, Eisenberg R, Holland P L, Krauss T D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst[J]. Science, 2012,338:1321-1324. doi: 10.1126/science.1227775

    2. [2]

      Rauchfuss T B. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere[J]. Acc. Chem. Res., 2015,48:2107-2116. doi: 10.1021/acs.accounts.5b00177

    3. [3]

      Tard C, Pickett C J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases[J]. Chem. Rev., 2009,109:2245-2274. doi: 10.1021/cr800542q

    4. [4]

      Li Y L, Rauchfuss T B. Synthesis of diiron? dithiolato carbonyl complexes[J]. Chem. Rev., 2014,116:7043-7077.

    5. [5]

      Schilter D, Camara J M, Huynh M T, Hammes-Schiffer S, Rauchfuss T B. Hydrogenase enzymes and their synthetic models: The role of metal hydrides[J]. Chem. Rev., 2016,116:8693-9749. doi: 10.1021/acs.chemrev.6b00180

    6. [6]

      Peters J W, Lanzilotta W N, Lemon B J, Seefeldt L C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium Pasteurianum to 1.8 angstrom resolution[J]. Science, 1998,282:1853-1858. doi: 10.1126/science.282.5395.1853

    7. [7]

      Nicolet Y, Piras C, Legrand P, Hatchikian C E, Fontecilla-Camps J C. Desulfovibrio Desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center[J]. Structure, 1999,7:13-23. doi: 10.1016/S0969-2126(99)80005-7

    8. [8]

      Fan H J, Hall M B. A capable bridging ligand for Fe-only hydrogenase: Density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen[J]. J. Am. Chem. Soc., 2001,123:3828-3829. doi: 10.1021/ja004120i

    9. [9]

      Lyon E J, Georgakaki I P, Reibenspies J H, Darensbourg M Y. Carbon monoxide and cyanide ligands in a classical organometallic complex model for Fe-only hydrogenase[J]. Angew. Chem. Int. Ed., 1999,38:3178-3180. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4

    10. [10]

      Li H X, Rauchfuss T B. Iron carbonyl sulfides, formaldehyde, and amines condense to give the proposed azadithiolate cofactor of the Fe-only hydrogenases[J]. J. Am. Chem. Soc., 2002,124:726-727. doi: 10.1021/ja016964n

    11. [11]

      Liu X F, Jiang Z Q, Jia Z J. Synthesis, characterization and crystal structures of tetrairon ethanedithiolate complexes containing bridging bidentate phosphine ligands[J]. Polyhedron, 2012,33:166-170. doi: 10.1016/j.poly.2011.11.032

    12. [12]

      Lawrence J D, Li H X, Rauchfuss T B, Bénard M, Rohmer M M. Diiron azadithiolates as models for the iron-only hydrogenase active site: Synthesis, structure, and stereoelectronics[J]. Angew. Chem. Int. Ed., 2001,40:1768-1771. doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E

    13. [13]

      Mejia-Rodriguez R, Chong D, Reibenspies J H, Soriaga M P, Darensbourg M Y. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes[J]. J. Am. Chem. Soc., 2004,126:12004-12014. doi: 10.1021/ja039394v

    14. [14]

      Li Z M, Xiao Z Y, Xu F F, Zeng X H, Liu X M. Enhancement in catalytic proton reduction by an internal base in a diiron pentacarbonyl complex: Its synthesis, characterization, inter-conversion and electrochemical investigation[J]. Dalton Trans., 2017,46:1864-1871. doi: 10.1039/C6DT04409C

    15. [15]

      Zhong W, Wu L, Jiang W D, Li Y L, Mookan N, Liu X M. Proton-coupled electron transfer in the reduction of diiron hexacarbonyl complexes and its enhancement on the electrocatalytic reduction of protons by a pendant basic group[J]. Dalton Trans., 2019,48:13711-13718. doi: 10.1039/C9DT02058F

    16. [16]

      Xiao Z Y, Zhong W, Liu X M. Recent developments in electrochemical investigations into iron carbonyl complexes relevant to the iron centres of hydrogenases[J]. Dalton Trans., 2022,51:40-47. doi: 10.1039/D1DT02705K

    17. [17]

      Orton G R F, Ringenberg M R, Hogarth G. Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: Ferrocene-bridged dithiolate complexes [Fe2(CO)6(μ-EC5H4FeC5H4E)] (E=S, Se)[J]. J. Organomet. Chem., 2022,978122472. doi: 10.1016/j.jorganchem.2022.122472

    18. [18]

      Orton G R F, Ghosh S, Alker L, Sarker J C, Pugh D, Richmond M G, Hartl F, Hogarth G. Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: Synthesis, redox properties and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates[J]. Dalton Trans., 2022,51:9748-9769. doi: 10.1039/D2DT00419D

    19. [19]

      Yan L, Yang J, Lü S, Liu X F, Li Y L, Liu X H, Jiang Z Q. Phosphine-containing diiron propane-1, 2-dithiolate derivatives: Synthesis, spectroscopy, X-ray crystal structures, and electrochemistry[J]. Catal. Lett., 2021,151:1857-1867. doi: 10.1007/s10562-020-03450-2

    20. [20]

      Liu X F, Ma Z Y, Jin B, Wang D, Zhao P H. Substituent effects of tertiary phosphines on the structures and electrochemical performances of azadithiolato-bridged diiron model complexes of [FeFe]-hydrogenases[J]. Appl. Organomet. Chem., 2022,36e6751.

    21. [21]

      Lian M, He J, Yu X Y, Mu C, Liu X F, Li Y L, Jiang Z Q. Diiron ethanedithiolate complexes with acetate ester: Synthesis, characterization and electrochemical properties[J]. J. Organomet. Chem., 2018,870:90-96. doi: 10.1016/j.jorganchem.2018.06.023

    22. [22]

      Li P, Wang M, He C J, Li G H, Liu X Y, Chen C N, Å kermark B, Sun L C. Influence of tertiary phosphanes on the coordination configurations and electrochemical properties of iron hydrogenase model complexes: Crystal structures of [(μ-S2C3H6)Fe2(CO)6-nLn] (L=PMe2Ph, n=1, 2; PPh3, P(OEt)3, n=1)[J]. Eur. J. Inorg. Chem., 2005:2506-2513.

    23. [23]

      Yan L, Hu K, Liu X F, Li Y L, Liu X H, Jiang Z Q. Diiron ethane-1, 2-dithiolate complexes with 1, 2, 3-thiadiazole moiety: Synthesis, X-ray crystal structures, electrochemistry and fungicidal activity[J]. Appl. Organomet. Chem., 2021,35e6084.

    24. [24]

      Zhao P H, Hu M Y, Li J R, Ma Z Y, Wang Y Z, He J, Li Y L, Liu X F. Influence of dithiolate bridges on the structures and electrocatalytic performance of small bite-angle PNP-chelated diiron complexes Fe2(μ-xdt)(CO)4{κ2-(Ph2P)2NR} related to [FeFe]-hydrogenases[J]. Organometallics, 2019,38:385-394. doi: 10.1021/acs.organomet.8b00759

    25. [25]

      Gao W M, Ekström J, Liu J H, Chen C N, Eriksson L, Weng L H, Å kermark B, Sun L C. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction[J]. Inorg. Chem., 2007,46:1981-1991. doi: 10.1021/ic0610278

    26. [26]

      LIU X F, XU B, XU H, LI Y L. Diiron butane-1, 2-dithiolate complexes with phosphine ligands: Preparation, crystal structures, and electrochemical catalytic performance[J]. Chinese J. Inorg. Chem., 2022,38(12):2521-2529.  

    27. [27]

      Jin B, Tan X, Zhang X X, Wang Z Y, Qu Y P, He Y B, Hu T P, Zhao P H. Substituent effects in carbon-nanotube-supported diiron monophosphine complexes for hydrogen evolution reaction[J]. Electrochim. Acta, 2022,434141325. doi: 10.1016/j.electacta.2022.141325

    28. [28]

      Chen F Y, He J, Yu X Y, Wang Z, Mu C, Liu X F, Li Y L, Jiang Z Q, Wu H K. Electrocatalytic properties of diiron ethanedithiolate complexes containing benzoate ester[J]. Appl. Organomet. Chem., 2018,32e4549. doi: 10.1002/aoc.4549

    29. [29]

      Lin H M, Li J R, Mu C, Li A, Liu X F, Zhao P H, Li Y L, Jiang Z Q, Wu H K. Synthesis, characterization, and electrochemistry of monophosphine‐containing diiron propane‐1, 2‐dithiolate complexes related to the active site of [FeFe]‐hydrogenases[J]. Appl. Organomet. Chem., 2019,33e5196.

    30. [30]

      Hu M Y, Zhao P H, Li J R, Gu X L, Jing X B, Liu X F. Synthesis, structures, and electrocatalytic properties of phosphine-monodentate, -chelate, and -bridge diiron 2, 2-dimethylpropanedithiolate complexes related to [FeFe]-hydrogenases[J]. Appl. Organomet. Chem., 2020,34e5523.

    31. [31]

      Chong D, Georgakaki I P, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga M P, Darensbourg M Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships[J]. Dalton Trans., 2003:4158-4163.

    32. [32]

      Gloaguen F, Lawrence J D, Rauchfuss T B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001,123:9476-9477. doi: 10.1021/ja016516f

    33. [33]

      Vannucci A K, Wang S, Nichol G S, Lichtenberger D L, Evans D H, Glass R S. Electronic and geometric effects of phosphatriazaadamantane ligands on the catalytic activity of a [FeFe] hydrogenase inspired complex[J]. Dalton Trans., 2010,39:3050-3056. doi: 10.1039/B921067A

    34. [34]

      Liu T B, Wang M, Shi Z, Cui H G, Dong W B, Chen J S, Å kermark B, Sun L C. Synthesis, structures and electrochemical properties of nitro- and amino-functionalized diiron azadithiolates as active site models of Fe-only hydrogenases[J]. Chem.-Eur. J., 2004,10:4474-4479. doi: 10.1002/chem.200400004

    35. [35]

      Fourmond V, Jacques P A, Fontecave M, Artero M. H2 Evolution and molecular electrocatalysts: Determination of overpotentials and effect of homoconjugation[J]. Inorg. Chem., 2010,49:10338-10347. doi: 10.1021/ic101187v

    36. [36]

      Tatematsu R, Inomata T, Ozawa T, Masuda H. Electrocatalytic hydrogen production by a Nickel(Ⅱ) complex with a phosphinopyridyl ligand[J]. Angew. Chem. Int. Ed., 2016,55:5247-5250. doi: 10.1002/anie.201511621

  • 加载中
    1. [1]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    2. [2]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    3. [3]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    4. [4]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    5. [5]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    6. [6]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    7. [7]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    8. [8]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    9. [9]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    10. [10]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    13. [13]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    14. [14]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    15. [15]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    16. [16]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    17. [17]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    20. [20]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

Metrics
  • PDF Downloads(1)
  • Abstract views(725)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return