Citation: Yang LIU, Guang FAN, Feng-Qin GAO, Lei HOU, Dong-Yu ZHU, Yao-Yu WANG. A terbium complex for the detection of dimetridazole and tetracycline in an aqueous solution[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1235-1243. doi: 10.11862/CJIC.2023.116 shu

A terbium complex for the detection of dimetridazole and tetracycline in an aqueous solution

Figures(7)

  • One complex with formula [Tb(L)0.5(H2O)2]·7H2O (1) was prepared under the solvothermal condition by employing (1, 1′∶3′, 1″-triphenyl)-3, 3″, 4′, 5, 5″, 6′-hexacarboxylic acid (H6L) and Tb3+ ion. The structure and composition of complex 1 were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The fluorescence property of complex 1 was also studied. The results show that complex 1 belongs to the orthorhombic system, Cmca space group with cell parameters: a=2.661 61(7) nm, b=1.421 03(4) nm, c=2.109 88(6) nm. Topological calculation shows that complex 1 is a novel (6, 6)-connected 3D network with the symbol (48.66.8)(49.66). Further study shows that complex 1 has strong fluorescence emission. It was sensitive in the detection of dimetridazole (MDZ) and tetracycline (TET) in an aqueous solution with high sensitivity, low detection limit, and good recyclability. The mechanism of fluorescence quenching was disclosed through the combination of experiments and density functional theory calculations.
  • 加载中
    1. [1]

      Liu X G, Tao C L, Yu H Q, Chen B, Liu Z, Zhu G P, Zhao Z J, Shen L, Tang B Z. A new luminescent metal-organic framework based on dicarboxyl-substituted tetraphenylethene for efficient detection of nitro-containing explosives and antibiotics in aqueous media[J]. J. Mater. Chem. C, 2018,6:2983-2988. doi: 10.1039/C7TC05535H

    2. [2]

      Li C P, Long W W, Lei Z, Guo L, Xie M J, Lü J, Zhu X D. Anionic metal-organic framework as a unique turn-on fluorescent chemical sensor for ultra-sensitive detection of antibiotics[J]. Chem. Commun., 2020,56:12403-12406. doi: 10.1039/D0CC05175F

    3. [3]

      YUAN Y Z, YANG Y S, ZHAO Y C, ZHANG Y P. Organometallic gels based on metal ion exchange for the detection of antibiotics and nitroaromatic compounds[J]. Chinese J. Inorg. Chem., 2022,38(6):1121-1132.  

    4. [4]

      Jampasa S, Pummoree J, Siangproh W, Khongchareonporn N, Ngamrojanavanich N, Chailapakul O, Chaiyo S. "Signal-On" electrochemical biosensor based on a competitive immunoassay format for the sensitive determination of oxytetracycline[J]. Sens. Actuators B-Chem., 2020,320(1)128389.

    5. [5]

      Luo Y, Xu L, Rysz M, Wang Y Q, Zhang H, Alvarez P J J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River basin, China[J]. Environ. Sci. Technol., 2011,45(5):1827-1833. doi: 10.1021/es104009s

    6. [6]

      Qiao M, Ying G G, Singer A C, Zhu Y G. Review of antibiotic resistance in China and its environment[J]. Environ. Int., 2018,110:160-172. doi: 10.1016/j.envint.2017.10.016

    7. [7]

      HE Y J, ZHOU K P, RAO Y X, JI R. Environmental risks of antibiotics in soil and the related bioremediation technologies[J]. Chinese Journal of Biotechnology, 2021,37(10):3487-3504. doi: 10.13345/j.cjb.210421

    8. [8]

      LI Y, YIN L P, LIU D, LIANG Y Q, PAN Y. Current situation of antibiotic contamination in China and the effect on plankton[J]. Chinese Journal of Applied Ecology, 2023,34(3):853-864.  

    9. [9]

      Tran N H, Chen H J, Reinhard M, Mao F J, Gin K Y H. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes[J]. Water Res., 2016,104(1):461-472.

    10. [10]

      Zhou Y J, Zhu F, Zheng D Y, Gao M M, Guo B F, Zhang N, Meng Y, Wu G L, Zhou Y L, Huo X. Detection of antibiotics in the urine of children and pregnant women in Jiangsu, China[J]. Environ. Res., 2021,196110945. doi: 10.1016/j.envres.2021.110945

    11. [11]

      Wang H X, Wang B, Zhao Q, Zhao Y P, Fu C W, Feng X, Wang N, Su M F, Tang C X, Jiang F, Zhou Y, Chen Y, Jiang Q W. Antibiotic body burden of Chinese school children: A multisite biomonitoring-based study[J]. Environ. Sci. Technol., 2015,49(8):5070-5079. doi: 10.1021/es5059428

    12. [12]

      Zhu Y T, Liu K Y, Zhang J J, Liu X J, Yang L S, Wei R, Wang S F, Zhang D M, Xie S Y, Tao F B. Antibiotic body burden of Chinese elderly population and health risk assessment: A biomonitoring-based study[J]. Environ. Pollut., 2020,256113311. doi: 10.1016/j.envpol.2019.113311

    13. [13]

      Tan J T, Wang Y W, Gong X H, Li J, Zhong W H, Shan L Q, Lei X P, Zhang Q, Zhou Q, Zhao Y Y, Chen C, Zhang Y J. Antibiotic resistance in neonates in China 2012-2019: A multicenter study[J]. J. Microbiol. Immunol. Infect., 2022,55(3):454-462. doi: 10.1016/j.jmii.2021.05.004

    14. [14]

      Marimuthu M, Arumugam S S, Sabarinathan D, Li H H, Chen Q S. Metal organic framework based fluorescence sensor for detection of antibiotics[J]. Trends Food Sci. Technol., 2021,116:1002-1028. doi: 10.1016/j.tifs.2021.08.022

    15. [15]

      Ntakatsane M, Chen P, Liu J S, Mosebi P, Xu L L, Matebesi P, Cui W W, Wang Y H. Multi-dimensional fluorescence spectroscopy coupled with chemometrics in rapid antibiotic detection and discrimination[J]. J. Food Meas. Charact., 2020,14:1892-1900. doi: 10.1007/s11694-020-00436-x

    16. [16]

      ZHANG Y T, ZHANG Z J, SUN Y H. Determination of tetracyclines residues in milk using high performance liquid chromatography with chemiluminescence detection[J]. Acta Chim. Sin., 2006,64(24):2461-2466. doi: 10.3321/j.issn:0567-7351.2006.24.013

    17. [17]

      Blasco C, Corcia A D, Picó Y. Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry[J]. Food Chem., 2009,116(4):1005-1012. doi: 10.1016/j.foodchem.2009.03.055

    18. [18]

      Tabrizchi M, Ilbeigi V. Detection of explosives by positive corona discharge ion mobility spectrometry[J]. J. Hazard. Mater., 2010,176(1/2/3):692-696.

    19. [19]

      Moreno-Gonzalez D, Lara F J, Jurgovsk N, Gámiz-Gracia L, García-Campaña A M. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers[J]. Anal. Chim. Acta, 2015,891(3):321-328.

    20. [20]

      Razavi S A A, Morsali A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap[J]. Coord. Chem. Rev., 2020,415(15)213299.

    21. [21]

      Zheng K, Liu Z Q, Huang Y, Chen F, Zeng C H, Zhong S L, Ng S W. Highly luminescent Ln-MOFs based on 1, 3-adamantanediacetic acid as bifunctional sensor[J]. Sens. Actuators B-Chem., 2018,257:705-757. doi: 10.1016/j.snb.2017.11.009

    22. [22]

      Yang D D, Lu L P, Feng S S, Zhu M L. First Ln-MOF as a trifunctional luminescent probe for the efficient sensing of aspartic acid, Fe3+ and DMSO[J]. Dalton Trans., 2020,49:7514-7524. doi: 10.1039/D0DT00938E

    23. [23]

      Sun N N, Yan B. Fluorescence detection of urinary N-methylformamide for biomonitoring of human occupational exposure to N, N- dimethylformamide by Eu(Ⅲ) functionalized MOFs[J]. Sens. Actuators B-Chem., 2018,261(15):153-160.

    24. [24]

      Dong J, Hou S L, Zhao B. Bimetallic lanthanide-organic framework membranes as a self-calibrating luminescent sensor for rapidly detecting antibiotics in water[J]. ACS Appl. Mater. Interfaces, 2020,12(34):38124-38131. doi: 10.1021/acsami.0c09940

    25. [25]

      Song T Q, Yuan K, Qiao W Z, Shi Y, Dong J, Gao H L, Yang X P, Cui J Z, Zhao B. Water stable[Tb4] cluster-based metal-organic framework as sensitive and recyclable luminescence sensor of quercetin[J]. Anal. Chem., 2019,91(4):2595-2599. doi: 10.1021/acs.analchem.8b05281

    26. [26]

      Wang L, Fan G L, Xu X F, Chen D M, Wang L, Shi W, Cheng P. Detection of polychlorinated benzenes (persistent organic pollutants) by a luminescent sensor based on a lanthanide metal-organic framework[J]. J. Mater. Chem. A, 2017,5:5541-5549. doi: 10.1039/C7TA00256D

    27. [27]

      Zhao D, Liu X H, Zhao Y, Wang P, Liu Y, Azam M, Al-Resayes S I, Lu Y, Sun W Y. Luminescent Cd(Ⅱ)-organic frameworks with chelating NH2 sites for selective detection of Fe(Ⅲ) and antibiotics[J]. J. Mater. Chem. A, 2017,5:15797-15807. doi: 10.1039/C7TA03849F

    28. [28]

      He H H, Zhu Q Q, Sun F X, Zhu G S. Two 3D metal-organic frameworks based on Co and Zn clusters for Knoevenagel condensation reaction and highly selective luminescence sensing[J]. Cryst. Growth Des., 2018,18(9):5573-5581. doi: 10.1021/acs.cgd.8b00867

    29. [29]

      Wen L L, Xu X Y, Lv K, Huang Y M, Zheng X F, Zhou L, Sun R Q, Li D F. Metal-organic frameworks constructed from D-camphor acid: Bifunctional properties related to luminescence sensing and liquid-phase separation[J]. ACS Appl. Mater. Interfaces, 2015,7(7):4449-4455. doi: 10.1021/acsami.5b00160

    30. [30]

      Wang H H, Hou L, Li Y Z, Jiang C Y, Wang Y Y, Zhu Z H. Porous MOF with highly efficient selectivity and chemical conversion for CO2[J]. ACS Appl. Mater. Interfaces, 2017,9(21):17969-17976. doi: 10.1021/acsami.7b03835

    31. [31]

      Blatov V A. Nanocluster analysis of intermetallic structures with the program package TOPOS[J]. Struct. Chem., 2012,23:955-963. doi: 10.1007/s11224-012-0013-3

    32. [32]

      Wang G D, Li Y Z, Shi W J, Zhang B, Hou L, Wang Y Y. A robust cluster-based Eu-MOF as multi-functional fluorescence sensor for detection of antibiotics and pesticides in water[J]. Sens. Actuators B-Chem., 2021,331(15)129377.

    33. [33]

      Yang D D, Shi Y S, Xiao T, Fang Y H, Zhen X J. Three-dimensional viologen-based lanthanide-organic frameworks: Photochromism and fluorescence detection of quinolone antibiotics[J]. Inorg. Chem., 2023,62(15):6084-6091. doi: 10.1021/acs.inorgchem.3c00065

    34. [34]

      Xu M Y, Wang Y L, Liu Q Y, Lin Z T, Liu Q Y. Lanthanide 5, 7-disulfonate-1, 4-naphthalenedicarboxylate frameworks constructed from trinuclear and tetranuclear lanthanide carboxylate clusters: Proton conduction and selective fluorescent sensing of Fe3+[J]. Inorg. Chem., 2020,59(10):7265-7273. doi: 10.1021/acs.inorgchem.0c00680

    35. [35]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-784.  

    36. [36]

      Wang B, Lv X L, Feng D W, Xie L H, Zhang J, Li M, Xie Y B, Li J R, Zhou H C. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. J. Am. Chem. Soc., 2016,138(19):6204-6216. doi: 10.1021/jacs.6b01663

    37. [37]

      Nagarkar S S, Joarder B, Chaudhari A K, Mukherjee S, Ghosh S K. Highly selective detection of nitro explosives by a luminescent metal-organic framework[J]. Angew. Chem. Int. Ed., 2013,52(10):2881-2885. doi: 10.1002/anie.201208885

    38. [38]

      Wang Y, Huang R, Zhang J J, Cheng G, Yang H. Lanthanide(Tb3+, Eu3+)-functionalized a new one dimensional Zn-MOF composite as luminescent probe for highly selectively sensing Fe3+[J]. Polyhedron, 2018,148(1):178-183.

    39. [39]

      Yu M K, Xie Y, Wang X Y, Li Y X, Li G M. Highly water-stable dye@Ln-MOFs for sensitive and selective detection toward antibiotics in water[J]. ACS Appl. Mater. Interfaces, 2019,11(23):21201-21210. doi: 10.1021/acsami.9b05815

    40. [40]

      Nagarkar S S, Desai A V, Ghosh S K. A fluorescent metal-organic framework for highly selective detection of nitro explosives in the aqueous phase[J]. Chem. Commun., 2014,50:8915-8918. doi: 10.1039/C4CC03053B

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(0)
  • Abstract views(671)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return