Citation: Mao LI, Ting-Fei LOU, Qi LI. TiO2 nanoparticles anchored on hollow carbon spheres for enhanced photocatalytic antibacterial[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1489-1500. doi: 10.11862/CJIC.2023.115 shu

TiO2 nanoparticles anchored on hollow carbon spheres for enhanced photocatalytic antibacterial

  • Corresponding author: Qi LI, zhuiqiuzhizhuo@163.com
  • Received Date: 23 February 2023
    Revised Date: 22 May 2023

Figures(9)

  • TiO2 nanoparticles anchored on hollow carbon spheres (HCS) composites (HCS@TiO2) were prepared via a facile wet-chemistry and controllable pyrolysis using polystyrene@polypyrrole derived HCS as substrates and titanium oxide acetylacetone (TOAC) as Ti source, respectively. The crystalline structures, micro morphologies, and optical properties of HCS@TiO2 composites were characterized by powder X-ray diffraction, ultraviolet-visible spectra, X-ray photoelectron spectra, thermogravimetric analysis, scanning electron microscope, transmission electron microscope, photoluminescence spectra, and Mott-Schottky curves. The structural optimization of HCS@TiO2 composites was investigated by tuning the loading mass of TiO2 and pyrolysis temperatures. Antibacterial performances for E. Coli and S. aureus were evaluated by using HCS@TiO2 with different loading masses and control group (HCS and TiO2) under simulated sunlight irradiation conditions as well as different irradiation times. It was found that the optimized HCS@TiO2-15 (the mass ratio of TOAC to HCS was 15∶1, the pyrolysis temperature was 650 ℃) showed a high antibacterial efficiency (above 99%) which was far superior to that of HCS and TiO2. Moreover, the irradiation time was determined to 90 min having best antibacterial activity (the survival rate was less than 1%).
  • 加载中
    1. [1]

      Akter N, Chowdhury L, Uddin J, Ullah A K M A, Shariare M H, Azam M S. N-halamine functionalization of polydopamine coated Fe3O4 nanoparticles for recyclable and magnetically separable antimicrobial materials[J]. Mater. Res. Express, 2018,5(11)115007. doi: 10.1088/2053-1591/aadc56

    2. [2]

      Brown D. Antibiotic resistance breakers can repurposed drugs fill the antibiotic discovery void?[J]. Nat. Rev. Drug Discovery, 2015,14(12):821-832. doi: 10.1038/nrd4675

    3. [3]

      Liu Y, Ding S, Dietrich R, Martlbauer E, Zhu K. A biosurfactant-inspired heptapeptide with improved specificity to kill MRSA[J]. Angew. Chem. Int. Ed., 2017,56(6):1486-1490. doi: 10.1002/anie.201609277

    4. [4]

      Song J, Zhang F, Huang Y, Keller A A, Tang X, Zhang W, Jia W, Santos J. Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles[J]. Environ. Sci. Nano, 2018,5(6):1341-1349. doi: 10.1039/C8EN00403J

    5. [5]

      DING Y, MA G, LI L C, WANG Y H, CHEN Y Y, WU X. Antibacterial activities of doped ZnO nano-powder with M2+ (M=Cu, Cd, Ag and Fe)[J]. Chinese J. Inorg. Chem., 2014,30(2):293-302.  

    6. [6]

      CHEN Y, LIU H B. Construction and photocatalytic performance of ultrathin graphitic carbon nitrogen nanosheets[J]. Chinese J. Inorg. Chem., 2017,33(12):2255-2261.  

    7. [7]

      Yadav H M, Kim J S, Pawar S H. Developments in photocatalytic antibacterial activity of nano TiO2: A review[J]. Korean J. Chem. Eng., 2016,33:1989-1998. doi: 10.1007/s11814-016-0118-2

    8. [8]

      XIAO W, ZHANG K J, FU Y J, GUO J Y, ZHANG Y, WANG Q. Preparation of Bi/WO3 composite photocatalytic materials with antibacterial properties[J]. Acta Materiae Compositae Sinica, 2021,38(12):4198-4204.  

    9. [9]

      Yu H J, Zhao Y F, Zhou C. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution[J]. J. Mater. Chem. A, 2014,2(10):3344-3351. doi: 10.1039/c3ta14108j

    10. [10]

      Wang S, Gong Q M, Liang J. Sonophotocatalytic degradation of methyl orange by carbon nanotube/TiO2 in aqueous solutions[J]. Ultrason. Sonochem., 2008,16(2):205-208.

    11. [11]

      Hu G J, Meng X F, Feng X Y, Ding Y F, Zhang S M, Yang M S. Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: Preparation, characterization and photocatalytic properties[J]. J. Mater. Sci., 2007,42(17):7162-7170. doi: 10.1007/s10853-007-1609-7

    12. [12]

      Ping N, Hao J C. Efficient degradation of organic dyes by titanium dioxide-silicotungstic acid nanocomposite films: Influence of inorganic salts and surfactants[J]. Colloids Surf. A Physicochem. Eng. Asp., 2014,443:501-507. doi: 10.1016/j.colsurfa.2013.12.005

    13. [13]

      Dai K, Zhang X H, Fan K, Peng T Y, Wei B Q. Hydrothermal synthesis of single-walled carbon nanotube-TiO2 hybrid and its photocatalytic activity[J]. Appl. Surf. Sci., 2013,270:238-244. doi: 10.1016/j.apsusc.2013.01.010

    14. [14]

      Yang M G, Liu H, Qiu C J, Iatsunskyi I, Coy E, Moya S, Wang Z, Wu W W, Zhao X B, Wang G C. Electron transfer correlated antibacterial activity of biocompatible graphene nanosheets-TiO2 coatings[J]. Carbon, 2020,166:350-360. doi: 10.1016/j.carbon.2020.05.036

    15. [15]

      Wanag A, Rokicka P, Ewelina K, Agata M S, Antoni W. TiO2/glucose nanomaterials with enhanced antibacterial properties[J]. Mater. Lett., 2016,185:264-267. doi: 10.1016/j.matlet.2016.08.133

    16. [16]

      Zhang T H, Liu Y J, Rao Y D, Li X P, Yuan D L, Tang S F, Zhao Q X. Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light[J]. Chem. Eng. J., 2020,384123350. doi: 10.1016/j.cej.2019.123350

    17. [17]

      Shah M S A S, Park A R, Zhang K, Park J H, Yoo P J. Green Synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity[J]. ACS Appl. Mater. Interfaces, 2012,4(8):3893-3401. doi: 10.1021/am301287m

    18. [18]

      Liu B, Liu L M, Liang X F, Wang H Y, Lou X W, Aydil E S. Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production[J]. Energy Environ. Sci., 2014,7(8):2592-2597. doi: 10.1039/C4EE00472H

    19. [19]

      GUO X Y, LI Y, ZHENG Y, CHENG P L, HE G X, FAN D D. Synthesis and characterization of homogeneous titanium dioxide microspheres[J]. Fine Chemicals, 2017,34(12):1404-1411.  

    20. [20]

      YAN W, ZHOU G W, WANG K, CHENG Y, ZHANG J Y. Preparation of TiO2 shelled hollow glass microspheres with high reflectivity by hydrothermal method[J]. Acta Materiae Compositae Sinica, 2021,38(10):3504-3511.  

    21. [21]

      ZENG X F, WANG M H, WANG J S, ZHAO Y N, ZHANG W L. Preparation and photocatalytic properties TiO2/graphene nanocomposites with sandwich structure[J]. Acta Materiae Compositae Sinica, 2022,39(2):656-663.  

    22. [22]

      Shabir M, Nasir S, Iqrash S, Maafa I M, Akhter P, Azam K, Ahmed A, Lee S H, Park Y K, Hussain M. Carbon nanotubes loaded N, S-codoped TiO2: Heterojunction assembly for enhanced integrated adsorptive-photocatalytic performance[J]. J. Ind. Eng. Chem., 2022,105:539-548. doi: 10.1016/j.jiec.2021.10.012

    23. [23]

      Hunge Y M, Yadav A A, Dhodamani A G, Suzuki N, Terashima C, Fujishima A, Mathe V L. Enhanced photocatalytic performance of ultrasound treated GO/TiO2 composite for photocatalytic degradation of salicylic acid under sunlight illumination[J]. Ultrason. Sonochem., 2020,61104849. doi: 10.1016/j.ultsonch.2019.104849

    24. [24]

      Fang J, Gao X H, Sun J, Cai X B, Ge C W, Li Q. An efficient TiO2/rGO hybrids with enhanced photocatalytic degradation toward reactive red 195[J]. Environ. Eng. Sci., 2021,38(6):555-564. doi: 10.1089/ees.2020.0188

    25. [25]

      XIA H Y, YAN M J, LÜ X, ZHANG W S, SONG L F, ZHANG J Y, NIU Y H. Preparation and properties of CQDs@TiO2 based durable self-cleaning photocatalytic coating for tunnel wall[J]. Acta Materiae Compositae Sinica, 2023. doi: 10.13801/j.cnki.fhclxb.20230117.004

    26. [26]

      Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S. Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E.coli in visible light irradiation[J]. Carbon, 2009,47(14):3280-3287. doi: 10.1016/j.carbon.2009.07.046

    27. [27]

      YANG H P, SHI Z M, DAI K J, DUAN Y P, WU J M. Surface modification of carbon nano tubes for the photocatalytic activity enhancement of composite TiO2-CNTs[J]. Acta Chim. Sin., 2011,69(5):536-542.  

    28. [28]

      Sharma H K, Sharma S K, Vemula K, Koirala A R, Yadav H M, Singh B P. CNT facilitated interfacial charge transfer of TiO2 nanocomposite for controlling the electron-hole recombination[J]. Solid State Sci., 2020,112106492.

    29. [29]

      Liu B B, Wang J, Li J H, Fan K L, Zhao D, Liu G Y, Yang C M, Tong H X, Qian D. N-doped carbon coated TiO2 hollow spheres as ultralong-cycle-life Na-ion battery anodes[J]. J. Phys. Chem. Solids, 2019,134:214-224. doi: 10.1016/j.jpcs.2019.06.021

    30. [30]

      Saravanan L, Patil R A, Gultom P, Kumar B, Manikandan A, Fu Y P, Chueh Y L, Cheng C L, Yeh W C, Ma Y R. Rutile-phase TiO2@carbon core-shell nanowires and their photoactivation in visible light region[J]. Carbon, 2021,181(1):280-289.

    31. [31]

      YANG H P, ZHANG Y C, FU X F, SONG S S, WU J M. Surface modification of CNTs and improved photocatalytic activity of TiO2-CNTs heterojunction[J]. Acta Phys.-Chim. Sin., 2013,29(6):1327-1335.  

    32. [32]

      Wan L, Li J F, Feng J Y, Sun W, Mao Z Q. Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation[J]. Mater. Sci. Eng. B, 2007,139:216-220. doi: 10.1016/j.mseb.2007.02.014

    33. [33]

      Yang M, Zhang X F, Guo C Y, Cheng X L, Zhu C H, Xu Y M, Major Z, Huo L H. Resistive room temperature DMA gas sensor based on the forest-like unusual n-type PANI/TiO2 nanocomposites[J]. Sens. Actuator B-Chem., 2021,342130067. doi: 10.1016/j.snb.2021.130067

    34. [34]

      Lou T F, Song S Z, Gao X H, Qian W J, Chen X L, Li Q. Sub-20-nm anatase TiO2 anchored on hollow carbon spheres for enhanced photocatalytic degradation of reactive red 195[J]. J. Colloid Interface Sci., 2022,617:663-672. doi: 10.1016/j.jcis.2022.03.049

    35. [35]

      O'Regan B C, Lenzmann F. Charge transport and recombination in a nanoscale interpenetrating network of n-type and p-type semiconductors: Transient photocurrent and photovoltage studies of TiO2/dye/CuSCN photovoltaic cells[J]. J. Phys. Chem. B, 2004,108(14):4342-4350. doi: 10.1021/jp035613n

    36. [36]

      ZHOU X J, HU Z L, REN Y M, XIE L D. Fabrication and photocatalyic performance of Bi2MoO6 modified TiO2 nanorod array photocatalyst[J]. Journal of Textile Research, 2022,43(10):97-105.  

    37. [37]

      Lin P Y, Shen J, Prasad C, Tang H, Liu Q Q, Zhang M Y. The synergetic effect of carbon nanotubes and MoS2 as co-catalysts for enhancing the photocatalytic oxygen evolution of Ag3PO4[J]. Ceram. Int., 2019,45(17):21120-21126. doi: 10.1016/j.ceramint.2019.07.088

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    13. [13]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(9)
  • Abstract views(796)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return