Morphological effect of strong metal-support interaction in Au/CeO2
- Corresponding author: Yu LI, yu.li@whut.edu.cn Zhi-Yi HU, zhiyi.hu@whut.edu.cn
Citation: Jing-Ru HAN, Zhi-Min SUN, Yu LI, Zhi-Yi HU. Morphological effect of strong metal-support interaction in Au/CeO2[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1682-1690. doi: 10.11862/CJIC.2023.113
Feng J, Gao C B, Yin Y D. Stabilization of noble metal nanostructures for catalysis and sensing[J]. Nanoscale, 2018,10(44):20492-20504. doi: 10.1039/C8NR06757K
Kong W, Deng J X, Li L H. Recent advances in noble metal MXene-based catalysts for electrocatalysis[J]. J. Mater. Chem. A, 2022,10(28):14674-14691. doi: 10.1039/D2TA00613H
Wang M Y, Ye M D, Iocozzia J, Lin C J, Lin Z Q. Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites[J]. Adv. Sci., 2016,3(6)160024.
Zhang F F, Zhu Y L, Lin Q, Zhang L, Zhang X W, Wang H T. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis[J]. Energy Environ. Sci., 2021,14(5):2954-3009. doi: 10.1039/D1EE00247C
Tauster S J, Fung S C. Strong metal-support interactions: Occurrence among the binary oxides of groups ⅡA-ⅤB[J]. J. Catal., 1978,55(1):29-35. doi: 10.1016/0021-9517(78)90182-3
Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. J. Am. Chem. Soc., 1978,100:170-175. doi: 10.1021/ja00469a029
Murata K, Mahara Y, Ohyama J, Yamamoto Y, Arai S, Satsuma A. The metal-support interaction concerning the particle size effect of Pd/Al2O3 on methane combustion[J]. Angew. Chem. Int. Ed., 2017,56(50):15993-15997. doi: 10.1002/anie.201709124
Shi R N, Zhao J X, Liu S S, Sun W, Li H X, Hao P P, Li Z, Ren J. Nitrogen-doped graphene supported copper catalysts for methanol oxidative carbonylation: Enhancement of catalytic activity and stability by nitrogen species[J]. Carbon, 2018,130:185-195. doi: 10.1016/j.carbon.2018.01.011
Du X R, Huang Y, Pan X L, Han B, Su Y, Jiang Q, Li M R, Tang H L, Li G, Qiao B T. Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts[J]. Nat. Commun., 2020,11(1)5811. doi: 10.1038/s41467-020-19484-4
Han B, Guo Y L, Huang Y K, Xi W, Xu J, Luo J, Qi H F, Ren Y J, Liu X Y, Qiao B T, Zhang T. Strong metal-support interactions between Pt single atoms and TiO2[J]. Angew. Chem. Int. Ed., 2020,59(29):11824-11829. doi: 10.1002/anie.202003208
Tang H L, Su Y, Zhang B S, Lee A F, Isaacs M A, Wilson K, Li L, Ren Y G, Huang J H, Haruta M, Qiao B T, Liu X, Jin C Z, Su D S, Wang J H, Zhang T. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide[J]. Sci. Adv., 2017,3(10)e1700231. doi: 10.1126/sciadv.1700231
Tang M, Li S D, Chen S Y, Ou Y, Hiroaki M, Yuan W T, Zhu B E, Yang H S, Gao Y, Zhang Z, Wang Y. Facet-dependent oxidative strong metal-support interactions of palladium-TiO2 determined by in situ transmission electron microscopy[J]. Angew. Chem. Int. Ed., 2021,60(41):22339-22344. doi: 10.1002/anie.202106805
Zhang Y S, Liu J X, Qian K, Jia A P, Li D, Shi L, Hu J, Zhu J F, Huang W X. Structure sensitivity of Au-TiO2 strong metal-support interactions[J]. Angew. Chem. Int. Ed., 2021,60(21):12074-12081. doi: 10.1002/anie.202101928
Wu Z F, Li Y Y, Huang W X. Size-dependent Pt-TiO2 strong metal-support interaction[J]. J. Phys. Chem. Lett., 2020,11(12):4603-4607. doi: 10.1021/acs.jpclett.0c01560
Florea I, Feral-Martin C, Majimel J, Ihiawakrim D, Hirlimann C, Ersen O. Three-dimensional tomographic analyses of CeO2 nanoparticles[J]. Cryst. Growth Des., 2013,13(3):1110-1121. doi: 10.1021/cg301445h
Zhang Y, Zhao S N, Feng J, Song S Y, Shi W D, Wang D, Zhang H J. Unraveling the physical chemistry and materials science of CeO2'-based nanostructures[J]. Chem, 2021,7(8):2022-2059. doi: 10.1016/j.chempr.2021.02.015
Mai H X, Sun L D, Zhang Y W, Si R, Feng W, Zhang H P, Liu H C, Yan C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J. Phys. Chem. B, 2005,109(51):24380-24385. doi: 10.1021/jp055584b
Yan Z X, Gong S H, An L, Yue L, Xu Z H. Enhanced catalytic activity of graphene oxide/CeO2 supported Pt toward HCHO decomposition at room temperature[J]. React. Kinet. Mech. Catal., 2018,124(1):293-304. doi: 10.1007/s11144-018-1348-6
Bernal S, Calvino J J, Cauqui M A, Gatica J M, Cartes C L, Omil J A P, Pintado J M. Some contributions of electron microscopy to the characterisation of the strong metal-support interaction effect[J]. Catal. Today, 2003,77(4):385-406. doi: 10.1016/S0920-5861(02)00382-6
WANG H X, LI X X, ZHOU Y. Constructing and photocatalytic performance of flower-like CeO2/TiO2 heterostructures[J]. Chinese J. Inorg. Chem., 2022,38(1):127-136.
Gilliss S R, Bentley J, Carter C B. Electron energy-loss spectroscopic study of the surface of ceria abrasives[J]. Appl. Surf. Sci., 2005,241(1/2):61-67.
Turner S, Lazar S, Freitag B, Egoavil R, Verbeeck J, Put S, Strauven Y, Van Tendeloo G. High resolution mapping of surface reduction in ceria nanoparticles[J]. Nanoscale, 2011,3(8):3385-3390. doi: 10.1039/c1nr10510h
Polo-Garzon F, Blum T F, Bao Z H, Wang K, Fung V, Huang Z N, Bickel E E, Jiang D E, Chi M F, Wu Z L. In situ strong metal-support interaction (SMSI) affects catalytic alcohol conversion[J]. ACS Catal., 2021,11(4):1938-1945. doi: 10.1021/acscatal.0c05324
Zhang J, Wang H, Wang L, Ali S, Wang C T, Wang L X, Meng X J, Li B, Su D S, Xiao F S. Wet-chemistry strong metal-support interactions in titania-supported Au catalysts[J]. J. Am. Chem. Soc., 2019,141(7):2975-2983. doi: 10.1021/jacs.8b10864
Mi R l, Li D, Hu Z, Yang R T. Morphology effects of CeO2 nanomaterials on the catalytic combustion of toluene: A combined kinetics and diffuse reflectance infrared fourier transform spectroscopy study[J]. ACS Catal., 2021,11(13):7876-7889. doi: 10.1021/acscatal.1c01981
Paparazzo E. Use and mis-use of X-ray photoemission spectroscopy Ce3d spectra of Ce2O3 and CeO2[J]. J. Phys. Condens. Matter, 2018,30(34)343003. doi: 10.1088/1361-648X/aad248
Eastman D E. Photoelectric work functions of transition, rare-earth, and noble metals[J]. Phys. Rev. B, 1970,2(1):1-2.
Schilling C, Hess C. Elucidating the role of support oxygen in the water-gas shift reaction over ceria-supported gold catalysts using operando spectroscopy[J]. ACS Catal., 2019,9(2):1159-1171. doi: 10.1021/acscatal.8b04536
Schilling C, Hess C. Real-time observation of the defect dynamics in working Au/CeO2 catalysts by combined operando raman/UV-Vis spectroscopy[J]. J. Phys. Chem. C, 2018,122(5):2909-2917. doi: 10.1021/acs.jpcc.8b00027
Q R Y, Ke T, J W J. Substantial pretreatment effect on Au/CeO2 nanocatalysts for CO oxidation: Importance of Au-CeO2 interaction[J]. Energy Technol., 2017,6201700511.
Ha H, Yoon S, An K, Kim H Y. Catalytic CO oxidation over Au nanoparticles supported on CeO2 nanocrystals: Effect of the Au-CeO2 interface[J]. ACS Catal., 2018,8(12):11491-11501. doi: 10.1021/acscatal.8b03539
Wang M R, Wang Y, Mou X L, Lin R H, Ding Y J. Design strategies and structure-performance relationships of heterogeneous catalysts for selective hydrogenation of 1, 3-butadiene[J]. Chinese J. Catal., 2022,43(4):101-1041.
Zhang X, Shi H, Xu B Q. Catalysis by gold: Isolated surface Au3+ ions are active sites for selective hydrogenation of 1, 3-butadiene over Au/ZrO2 catalysts[J]. Angew. Chem. Int. Ed., 2005,44(43):7132-7135. doi: 10.1002/anie.200502101
Nassereddine A, Ricolleau C, Alloyeau D. Insights into the structure-reactivity of supported Au nanocatalyst during butadiene selective hydrogenation by atomic scale in situ environmental TEM[J]. Microsc. Microanal., 2017,27:41-42.
Hugon A, Delannoy L, Louis C. Supported gold catalysts for selective hydrogenation of 1, 3-butadiene in the presence of an excess of alkenes[J]. Gold Bull, 2008,41(2):127-138. doi: 10.1007/BF03216590
Jing P, Gong X, Liu B C, Zhang J. Recent advances in synergistic effect promoted catalysts for preferential oxidation of carbon monoxide[J]. Catal. Sci. Technol., 2020,10(4):919-934. doi: 10.1039/C9CY02073J
Liu Z P, Wang C M, Fan K N. Single gold atoms in heterogeneous catalysis: Selective 1, 3-butadiene hydrogenation over Au/ZrO2[J]. Angew. Chem. Int. Ed., 2006,45(41):6865-6868. doi: 10.1002/anie.200601853
ZHANG T, ZHANG Y W. Research advances on strong metal-support interactions at metal-oxide interfaces and their roles in regulating catalytic properties of noble metal-ceria supported catalysts[J]. Journal of the Chinese Society of Rare Earths, 2014,32(2):129-142.
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473