Citation: Xiao-Shuang ZHU, Xue-Zhi GAO, Rui WANG, Yan-Hong YANG, Jia-Wei LIANG, Bing LI. Bovine serum albumin binding property of Dy(Ⅲ) and Tm(Ⅲ) complexes based on pyridine-2-carboxylic acid[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1360-1368. doi: 10.11862/CJIC.2023.111 shu

Bovine serum albumin binding property of Dy(Ⅲ) and Tm(Ⅲ) complexes based on pyridine-2-carboxylic acid

  • Corresponding author: Bing LI, nxdaxue@126.com
  • Received Date: 28 November 2022
    Revised Date: 27 April 2023

Figures(4)

  • Two isomorphous mononuclear complexes [M(tpc)3(H2O)3]·H2O, where M=Dy (1), Tm (2), were synthesized through the reaction of 5-(trifluoromethyl) pyridine-2-carboxylic acid (Htpc), DyCl3·6H2O, and TmCl3·3H2O. The crystallographic details of complexes 1 and 2 reveal a monoclinic crystal system with the P21/c space group. Metal ions in the two complexes are eight-coordinated and located in the slightly deformed dodecahedron geometry. The fluorescence data reveal that complexes 1 and 2 could interact with bovine serum albumin (BSA) through the static quenching mechanism with the quenching constant Ksv ranging from 105 to 106 L·mol-1. Hydrophobic interaction plays an important role in the interaction of complexes and BSA since both ΔH and ΔS values are positive. The binding constant between the two complexes and BSA was about 104 L·mol-1 at 25 ℃, which indicates the complexes and BSA have moderate interactions.
  • 加载中
    1. [1]

      Lacroix A, Edwardson T G, Hancock M A, Dore M D, Sleiman H F. Development of DNA nanostructures for high‑affinity binding to human serum albumin[J]. J. Am. Chem. Soc., 2017,139(21):7355-7362. doi: 10.1021/jacs.7b02917

    2. [2]

      Dixon J M, Egusa S. Conformational change-induced fluorescence of bovine serum albumin-gold complexes[J]. J. Am. Chem. Soc., 2018,140(6):2265-2271. doi: 10.1021/jacs.7b11712

    3. [3]

      Rogawski R, Sharon M. Characterizing endogenous protein complexes with biological mass spectrometry[J]. Chem. Rev., 2021,122(8):7386-7414.

    4. [4]

      Jiang J, Cao B, Chen Y T, Luo H J, Xue J Y, Xiong X L, Zou T T. Alkylgold(Ⅲ) complexes undergo unprecedented photo-induced β-hydride elimination and reduction for targeted cancer therapy[J]. Angew. Chem. Int. Ed., 2022,134(16)e202201103.

    5. [5]

      Zhang G, Wang L, Pan J. Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques[J]. J. Agric. Food Chem., 2012,60(10):2721-2729. doi: 10.1021/jf205260g

    6. [6]

      Li X F, Ma L G, Yang Y Q, Liu Y J, Meng X R, Yang H X. Synthesis, crystal structure and bovine serum albumin-binding studies of a new Cd(Ⅱ) complex incorporating 2, 2'-(propane-1, 3-diyl) bis(1H-imidazole-4, 5-dicarboxylate)[J]. J. Chem. Res., 2020,44(3/4):198-205.

    7. [7]

      Raja D S, Bhuvanesh N S P, Natarajan K. Synthesis, crystal structure and pharmacological evaluation of two new Cu(Ⅱ) complexes of 2-oxo-1, 2-dihydroquinoline-3-carbaldehyde (benzoyl) hydrazone: A comparative investigation[J]. Eur. J. Med. Chem., 2012,47:73-85. doi: 10.1016/j.ejmech.2011.10.024

    8. [8]

      Annaraj B, Neelakantan M A. Synthesis, crystal structure, spectral characterization and biological exploration of water soluble Cu(Ⅱ) complexes of vitamin B6 derivative[J]. Eur. J. Med. Chem., 2015,102:1-8. doi: 10.1016/j.ejmech.2015.07.041

    9. [9]

      Sahu G, Banerjee A, Samanta R, Mohanty M, Lima S, Tiekink E R, Dinda R. Water-soluble dioxidovanadium? complexes of aroylhydrazones: DNA/BSA interactions, hydrophobicity, and cell-selective anticancer potential[J]. Inorg. Chem., 2021,60(20):15291-15309. doi: 10.1021/acs.inorgchem.1c01899

    10. [10]

      Anjomshoa M, Torkzadeh-Mahani M, Sahihi M, Rizzoli C, Ansari M, Janczak J, Esfahani S S, Ataei F, Dehkhodaei M, Amirheidari B. Tris-chelated complexes of nickel(Ⅱ) with bipyridine derivatives: DNA binding and cleavage, BSA binding, molecular docking, and cytotoxicity[J]. J. Biomol. Struct. Dyn., 2019,37:3887-3904. doi: 10.1080/07391102.2018.1534700

    11. [11]

      Song H, Wang J K, Chen X Y, Tian X Y, Li Y L, Li B. Synthesis, crystal structure and antifungal activity of a new Zn(Ⅱ) complex based on 4-(5-(pyridin-3-yl)-4H-1, 2, 4-triazol-3-yl) benzoic acid[J]. Chin. J. Struct. Chem., 2021,40(1):103-108.

    12. [12]

      Mugnaini C, Kostrzewa M, Bryk M, Mahmoud A M, Brizzi A, Lamponi S, Giorgi G, Ferlenghi F, Vacondio F, Maccioni P, Colombo G, Mor M, Starowicz K, Marzo V D, Ligresti A, Corelli F. Design, synthesis, and physicochemical and pharmacological profiling of 7-hydroxy-5-oxopyrazolo[4, 3-b]pyridine-6-carboxamide derivatives with antiosteoarthritic activity in vivo[J]. J. Med. Chem., 2020,63(13):7369-7391. doi: 10.1021/acs.jmedchem.0c00595

    13. [13]

      CHEN L, DENG X, TAN Y X, ZHANG F X, KUANG D Z, JIANG W J. Synthesis, anti-tumor activity, and interaction with DNA of two substituted benzyltin complexes[J]. Chinese J. Inorg. Chem., 2022,38(6):1081-1089.  

    14. [14]

      Swanson D M. Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist[J]. J. Med. Chem., 2005,48(6):1857-1872. doi: 10.1021/jm0495071

    15. [15]

      Asahina Y, Araya I, Iwase K, Iinuma F, Hosaka M, Ishizaki T. Synthesis and antibacterial activity of the 4-quinolone-3-carboxylic acid derivatives having a trifluoromethyl group as a novel N-1 substituent[J]. J. Med. Chem., 2005,48(9):3443-3446. doi: 10.1021/jm040204g

    16. [16]

      Akher F B, Farrokhzadeh A, Ravenscroft N, Kuttel M M. Mechanistic study of potent fluorinated EGFR kinase inhibitors with a quinazoline scaffold against L858R/T790M/C797S resistance mutation: Unveiling the fluorine substituent cooperativity effect on the inhibitory activity[J]. J. Phys. Chem. B, 2020,124(28):5813-5824. doi: 10.1021/acs.jpcb.0c03440

    17. [17]

      Li B, Wang J K, Song H, Wu H P, Chen X Y, Ma X X. Synthesis, crystal structure, and BSA interaction with a new Co(Ⅱ) complex based on 5-(trifluoromethyl)pyridine-2-carboxylic acid[J]. J. Coord. Chem., 2019,72(15):2562-2573. doi: 10.1080/00958972.2019.1663836

    18. [18]

      Vadori M, Pacor S, Vita F, Zorzet S, Cocchietto M, Sava G. Features and full reversibility of the renal toxicity of the ruthenium-based drug NAMI-A in mice[J]. J. Inorg. Biochem., 2013,118:21-27. doi: 10.1016/j.jinorgbio.2012.09.018

    19. [19]

      Wang J K, Li B, Wu H P, Tian X Y, Ma X X. Synthesis, crystal structure and DNA-binding property of a Mn(Ⅱ) complex based on 5-(trifluoromethyl)pyridine-2-carboxylic acid[J]. Chin. J. Struct. Chem., 2019,8:1349-1355.

    20. [20]

      Shang Y P, Feng X, Li J X, Wang Y F, Wang L Y, Li Z J. Two novel hydroxide anions bridged lanthanide coordination polymers based on fluorinated carboxylate ligand: Structures, luminescence and magnetic property[J]. Inorg. Chem. Commun., 2019,105:47-54. doi: 10.1016/j.inoche.2019.04.003

    21. [21]

      Asadpour S, Aramesh-Boroujeni Z, Jahani S. In vitro anticancer activity of parent and nano-encapsulated samarium(Ⅲ) complex towards antimicrobial activity studies and FS-DNA/BSA binding affinity[J]. RSC Adv., 2020,10(53):31979-31990. doi: 10.1039/D0RA05280A

    22. [22]

      Zhu X P, Li Z P, Ji X X, Chen Q, Wu S Y, Gao E J, Zhu M C. Two new lanthanide complexes with 5-(pyrazol-1-yl)nicotinic acid: Structures and their anti-cancer properties[J]. J. Inorg. Biochem., 2021,222111505. doi: 10.1016/j.jinorgbio.2021.111505

    23. [23]

      Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Noroozifar M. Evaluation of DNA, BSA binding, DNA cleavage and antimicrobial activity of ytterbium(Ⅲ) complex containing 2, 2'-bipyridine ligand[J]. J. Biomol. Struct. Dyn., 2019,38:1711-1725.

    24. [24]

      Singh K, Srivastava P, Patra A K. Binding interactions with biological targets and DNA photocleavage activity of Pr(Ⅲ) and Nd(Ⅲ) complexes of dipyridoquinoxaline[J]. Inorg. Chim. Acta, 2016,451:73-81. doi: 10.1016/j.ica.2016.07.003

    25. [25]

      Sheldrick G M. SHELXL-2018. University of Göttingen, Germany, 2018.

    26. [26]

      Ren Y W, Hu H N, Zhang J, Zhuang X J, Li D P, Li Y X. Characterization and DNA interaction of lanthanide complexes based on thiourea ligand[J]. Chin. J. Struct. Chem., 2021,40(1):47-54.

    27. [27]

      Shan F L, Song H, Gao X Z, Li B, Ma X X. Synthesis, crystal structure and DNA-binding property of a new Cu(Ⅱ) complex based on 4-(trifluoromethyl)nicotinic acid[J]. Chin. J. Struct. Chem., 2022,41(2):57-63.

    28. [28]

      Bashir M, Yousuf I, Prasad C P. Mixed Ni(Ⅱ) and Co(Ⅱ) complexes of nalidixic acid drug: Synthesis, characterization, DNA/BSA binding profile and in vitro cytotoxic evaluation against MDA-MB-231 and HepG2 cancer cell lines[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,271120910. doi: 10.1016/j.saa.2022.120910

    29. [29]

      Anjomshoa M, Fatemi S J, Torkzadeh-Mahani M, Hadadzadeh H. DNA-and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(Ⅱ) complex coordinated by 5, 6-diphenyl-3-(2-pyridyl)-1, 2, 4-triazine[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2014,127:511-520. doi: 10.1016/j.saa.2014.02.048

    30. [30]

      Pan A, Mitra I, Mukherjee S, Ghosh S, Chatterji U, Moi S C. Development of anticancer activity of the Pt(Ⅱ) complex with N-heterocyclic amine: Its in vitro pharmacokinetics with thiol and thio-ethers, DNA and BSA binding, and cell cycle arrest[J]. ACS Appl. Bio Mater., 2021,4(1):853-868. doi: 10.1021/acsabm.0c01374

    31. [31]

      Machicote R G, Pacheco M E, Bruzzone L. Binding of several benzodiazepines to bovine serum albumin: Fluorescence study[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2010,77(2):466-472. doi: 10.1016/j.saa.2010.06.020

    32. [32]

      Samari F, Shamsipur M, Hemmateenejad B, Khayamian T, Gharaghani S. Investigation of the interaction between amodiaquine and human serum albumin by fluorescence spectroscopy and molecular modeling[J]. Eur. J. Med. Chem., 2012,54:255-263. doi: 10.1016/j.ejmech.2012.05.007

    33. [33]

      Guo J L, Liu G Y, Wang R Y, Sun S X. Synthesis and structure elucidation of two essential metal complexes: In-vitro studies of their BSA/HSA-binding properties, docking simulations, and anticancer activities[J]. Molecules, 2022,27(6)1886. doi: 10.3390/molecules27061886

    34. [34]

      Divsalar A, Razmi M, Saboury A A, Mansouri-Torshizi H, Ahmad F. Biological evaluation of a new synthesized Pt(Ⅱ) complex by cytotoxic and spectroscopic studies[J]. Cell Biochem. Biophys., 2015,71(3):1415-1424. doi: 10.1007/s12013-014-0364-z

    35. [35]

      Sangeetha S, Murali M. Cytotoxic ruthenium(Ⅱ) complexes containing a dangling pyridine: Selectivity for diseased cells mediated by pH-dependent DNA binding[J]. Inorg. Chem., 2022,61(6):2864-2882. doi: 10.1021/acs.inorgchem.1c03399

    36. [36]

      Patel R V, Keum Y S, Park S W. Nitroimidazoles, quinolones and oxazolidinones as fluorine bearing antitubercular clinical candidates[J]. Mini-Rev. Med. Chem., 2015,15(14):1174-1186. doi: 10.2174/1389557515666150709121153

    37. [37]

      Ross P D, Subramanian S. Thermodynamics of protein association reactions: Forces contributing to stability[J]. Biochemistry, 1981,20(11):3096-3102. doi: 10.1021/bi00514a017

    38. [38]

      Aseman M D, Aryamanesh S, Shojaeifard Z, Hemmateenejad B, Nabavizadeh S M. Cycloplatinated(Ⅱ) derivatives of mercaptopurine capable of binding interactions with HSA/DNA[J]. Inorg. Chem., 2019,58(23):16154-16170. doi: 10.1021/acs.inorgchem.9b02696

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    6. [6]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    7. [7]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    8. [8]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    9. [9]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    12. [12]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    13. [13]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    14. [14]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    15. [15]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    16. [16]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    17. [17]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

Metrics
  • PDF Downloads(1)
  • Abstract views(774)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return