Orange emission graphene oxide quantum dots: A one-pot strategy for highly efficient fabrication and application in the imaging of pH in living cells
- Corresponding author: Gui YIN, yingui@nju.edu.cn
Citation: Hong-Jin WANG, Gui YIN. Orange emission graphene oxide quantum dots: A one-pot strategy for highly efficient fabrication and application in the imaging of pH in living cells[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1338-1348. doi: 10.11862/CJIC.2023.106
Han J Y, Burgess K. Fluorescent indicators for intracellular pH[J]. Chem. Rev., 2010,110(5):2709-2728. doi: 10.1021/cr900249z
Chen Y. Recent advances in fluorescent probes for extracellular pH detection and imaging[J]. Anal. Biochem., 2021,612113900. doi: 10.1016/j.ab.2020.113900
Martynov V I, Pakhomov A A, Deyev I E, Petrenko A G. Genetically encoded fluorescent indicators for live cell pH imaging[J]. Biochim. Biophys. Acta-Gen. Subj., 2018,1862(12):2924-2939. doi: 10.1016/j.bbagen.2018.09.013
Mukherjee A, Saha P C, Das R S, Bera T, Guha S. Acidic pH-activatable visible to near-infrared switchable ratiometric fluorescent probe for live-cell lysosome targeted imaging[J]. ACS Sens., 2021,6(6):2141-2146. doi: 10.1021/acssensors.1c00961
E S, Mao Q X, Yuan X L, Kong X L, Chen X W, Wang J H. Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots[J]. Nanoscale, 2018,10(26):12788-12796. doi: 10.1039/C8NR03453B
Ma Q J, Li X, Feng S X, Liang B B, Zhou T Q, Xu M, Ma Z Y. A novel acidic pH fluorescent probe based on a benzothiazole derivative[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2017,177:6-13. doi: 10.1016/j.saa.2017.01.024
Wen Y, Jing N, Huo F J, Yin C X. Recent progress of organic small molecule-based fluorescent probes for intracellular pH sensing[J]. Analyst, 2021,146(24):7450-7463. doi: 10.1039/D1AN01621K
Panwar N, Soehartono A M, Chan K K, Zeng S W, Xu G X, Qu J L, Coquet P, Yong K T, Chen X Y. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery[J]. Chem. Rev., 2019,119(16):9559-9656. doi: 10.1021/acs.chemrev.9b00099
ZHANG L P, WAN Y G, WU Y M, WANG J, XU D B, XUE J L, DUAN W B, LIU D S. One-pot aqueous synthesis and cell labeling application of glutathione capped Cu-In-Zn-S quantum dots[J]. Chinese J. Inorg. Chem., 2022,38(2):361-367.
Macairan J R, de Medeiros T V, Gazzetto M, Villanueva F Y, Cannizzo A, Naccache R. Elucidating the mechanism of dual-fluorescence in carbon dots[J]. J. Colloid Interface Sci., 2022,606:67-76. doi: 10.1016/j.jcis.2021.07.156
Yan F Y, Bai Z J, Ma T C, Sun X D, Zu F L, Luo Y M, Chen L. Surface modification of carbon quantum dots by fluorescein derivative for dual-emission ratiometric fluorescent hypochlorite biosensing and in vivo bioimaging[J]. Sens. Actuator B-Chem., 2019,296126638. doi: 10.1016/j.snb.2019.126638
Luo P G, Yang F, Yang S T, Sonkar S K, Yang L, Broglie J J, Liu Y, Sun Y P. Carbon-based quantum dots for fluorescence imaging of cells and tissues[J]. RSC Adv., 2014,4(21):10791-10807. doi: 10.1039/c3ra47683a
Shen S L, Wang J J, Wu Z J, Du Z, Tang Z H, Yang J H. Graphene quantum dots with high yield and high quality synthesized from low cost precursor of aphanitic graphite[J]. Nanomaterials, 2020,10(2)375. doi: 10.3390/nano10020375
FENG C, MO Z L, GOU H, ZHANG C. Preparation and fluorescence property of europium complex nanocrystals growing on graphene oxide[J]. Chinese J. Inorg. Chem., 2014,30(3):677-682.
He C, Xu P, Zhang X H, Long W J. The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective[J]. Carbon, 2022,186:91-127. doi: 10.1016/j.carbon.2021.10.002
Yuan F L, Li S H, Fan Z T, Meng X Y, Fan L Z, Yang S H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications[J]. Nano Today, 2016,11(5):565-586. doi: 10.1016/j.nantod.2016.08.006
Ding Y Y, Gong X J, Liu Y, Lu W J, Gao Y F, Xian M, Shuang S M, Dong C. Facile preparation of bright orange fluorescent carbon dots and the constructed biosensing platform for the detection of pH in living cells[J]. Talanta, 2018,189:8-15. doi: 10.1016/j.talanta.2018.06.060
Kumawat M K, Thakur M, Gurung R B, Srivastava R. Graphene quantum dots from Mangifera indica: Application in near-infrared bioimaging and intracellular nanothermometry[J]. ACS Sustain. Chem. Eng., 2017,5(2):1382-1391. doi: 10.1021/acssuschemeng.6b01893
Ye X X, Xiang Y H, Wang Q R, Li Z, Liu Z H. A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection[J]. Small, 2019,15(48)1901673. doi: 10.1002/smll.201901673
Liu J J, Li D W, Zhang K, Yang M X, Sun H C, Yang B. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging[J]. Small, 2018,14(15)1703919. doi: 10.1002/smll.201703919
Khodabakhshi S, Fulvio P F, Sousaraei A, Kiani S, Niu Y, Palmer R E, Kuo W C H, Rudd J, Barron A R, Andreoli E. Oxidative synthesis of yellow photoluminescent carbon nanoribbons from carbon black[J]. Carbon, 2021,183:495-503. doi: 10.1016/j.carbon.2021.07.032
Ji C C, Han Q R, Zhou Y Q, Wu J J, Shi W Q, Gao L P, Leblanc R M, Peng Z L. Phenylenediamine-derived near infrared carbon dots: The kilogram-scale preparation, formation process, photoluminescence tuning mechanism and application as red phosphors[J]. Carbon, 2022,192:198-208. doi: 10.1016/j.carbon.2022.02.054
Sun X M, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H J. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Res., 2008,1(3):203-212. doi: 10.1007/s12274-008-8021-8
Liu H H, Xu A, Feng Z J, Long D, Chen X Y, Lu M. pH-dependent fluorescent quenching of graphene oxide quantum dots: Towards hydroxyl[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2020,260114627. doi: 10.1016/j.mseb.2020.114627
Zhou S H, Xu H B, Gan W, Yuan Q H. Graphene quantum dots: Recent progress in preparation and fluorescence sensing applications[J]. RSC Adv., 2016,6(112)110775. doi: 10.1039/C6RA24349E
Rosillo-Lopez M, Salzmann C G. A simple and mild chemical oxidation route to high-purity nano-graphene oxide[J]. Carbon, 2016,106:56-63. doi: 10.1016/j.carbon.2016.05.022
Shi W Q, Han Q R, Wu J J, Ji C Y, Zhou Y Q, Li S H, Gao L P, Leblanc R M, Peng Z L. Synthesis mechanisms, structural models, and photothermal therapy applications of top-down carbon dots from carbon powder, graphite, graphene, and carbon nanotubes[J]. Int. J. Mol. Sci., 2022,23(3)1456. doi: 10.3390/ijms23031456
Li L L, Wu G H, Yang G H, Peng J, Zhao J W, Zhu J J. Focusing on luminescent graphene quantum dots: Current status and future perspectives[J]. Nanoscale, 2013,5(10):4015-4039. doi: 10.1039/c3nr33849e
Kansara V, Shukla R, Flora S J S, Bahadur P, Tiwari S. Graphene quantum dots: Synthesis, optical properties and navigational applications against cancer[J]. Mater. Today Commun., 2022,31103359. doi: 10.1016/j.mtcomm.2022.103359
Rigodanza F, Burian M, Arcudi F, Đorđević L, Amenitsch H, Prato M. Snapshots into carbon dots formation through a combined spectroscopic approach[J]. Nat. Commun., 2021,12(1)2640. doi: 10.1038/s41467-021-22902-w
Peng J, Gao W, Gupta B K, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany L B, Zhan X B, Gao G H, Vithayathil S A, Kaipparettu B A, Marti A A, Hayashi T, Zhu J J, Ajayan P M. Graphene quantum dots derived from carbon fibers[J]. Nano Lett., 2012,12(2):844-849. doi: 10.1021/nl2038979
Hoang T T, Pham H P, Tran Q T. A facile microwave-assisted hydrothermal synthesis of graphene quantum dots for organic solar cell efficiency improvement[J]. J. Nanomater., 20203207909.
Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958,80(6)1339. doi: 10.1021/ja01539a017
Niu X Q, Song T B, Xiong H M. Large scale synthesis of red emissive carbon dots powder by solid state reaction for fingerprint identification[J]. Chin. Chem. Lett., 2021,32(6):1953-1956. doi: 10.1016/j.cclet.2021.01.006
Lim S Y, Shen W, Gao Z Q. Carbon quantum dots and their applications[J]. Chem. Soc. Rev., 2015,44(1):362-381. doi: 10.1039/C4CS00269E
Mou Z H, Gao Z J, Hu Y P. Orange emissive carbon dots for fluorescent determination of hypoxanthine in fish[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,269120734. doi: 10.1016/j.saa.2021.120734
Guo J Z, Lu Y S, Xie A Q, Li G, Liang Z B, Wang C F, Yang X N, Chen S. Yellow-emissive carbon dots with high solid-state photoluminescence[J]. Adv. Funct. Mater., 2022,32(20)2110393. doi: 10.1002/adfm.202110393
Dervishi E, Ji Z Q, Htoon H, Sykora M, Doorn S K. Raman spectroscopy of bottom-up synthesized graphene quantum dots: Size and structure dependence[J]. Nanoscale, 2019,11(35):16571-16581. doi: 10.1039/C9NR05345J
Liu F, Jang M H, Ha H D, Kim J H, Cho Y H, Seo T S. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: Origin of blue and green luminescence[J]. Adv. Mater., 2013,25(27):3657-3662. doi: 10.1002/adma.201300233
Fathi P, Moitra P, McDonald M M, Esch M B, Pan D. Near-infrared emitting dual-stimuli-responsive carbon dots from endogenous bile pigments[J]. Nanoscale, 2021,13(31):13487-13496. doi: 10.1039/D1NR01295A
Maguire C M, Rösslein M, Wick P, Prina-Mello A. Characterisation of particles in solution-A perspective on light scattering and comparative technologies[J]. Sci. Technol. Adv. Mater., 2018,19(1):732-745. doi: 10.1080/14686996.2018.1517587
Dager A, Uchida T, Maekawa T, Tachibana M. Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: Photoluminescence analysis using machine learning[J]. Sci. Rep., 2019,9(1)14004. doi: 10.1038/s41598-019-50397-5
Luo Z M, Qi G Q, Chen K Y, Zou M, Yuwen L H, Zhang X W, Huang W, Wang L H. Microwave-assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white-light-emitting diodes[J]. Adv. Funct. Mater., 2016,26(16):2739-2744. doi: 10.1002/adfm.201505044
Nguyen H A, Srivastava I, Pan D, Gruebele M. Unraveling the fluorescence mechanism of carbon dots with sub-single-particle resolution[J]. ACS Nano, 2020,14(5):6127-6137. doi: 10.1021/acsnano.0c01924
Cunci L, González-Colón V, Lee Vargas-Pérez B, Ortiz-Santiago J, Pagán M, Carrion P, Cruz J, Molina-Ontoria A, Martinez N, Silva W, Echegoyen L, Cabrera C R. Multicolor fluorescent graphene oxide quantum dots for sensing cancer cell biomarkers[J]. ACS Appl. Nano Mater., 2021,4(1):211-219. doi: 10.1021/acsanm.0c02526
Zhang S R, Ji X H, Liu J, Wang Q, Jin L X. One-step synthesis of yellow-emissive carbon dots with a large Stokes shift and their application in fluorimetric imaging of intracellular pH[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2020,227117677. doi: 10.1016/j.saa.2019.117677
Zhang R Z, Chen W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions[J]. Biosens. Bioelectron., 2014,55:83-90. doi: 10.1016/j.bios.2013.11.074
Sheng X Y, Li S Y, Zhan Y L, Guo J H, Zhou B Y, Zhao J Y, Li Z, Liu M H, Li Y H, Qu T X, Zhou Q X. Selective detection of Cu2+ using nitrogen-doped carbon dots derived from humic acid and urea based on specific inner filter effect[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2021,263120136. doi: 10.1016/j.saa.2021.120136
Gong X J, Lu W J, Paau M C, Hu Q, Wu X, Shuang S M, Dong C, Choi M M F. Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging[J]. Anal. Chim. Acta, 2015,861:74-84. doi: 10.1016/j.aca.2014.12.045
Xu Q, Pu P, Zhao J G, Dong C B, Gao C, Chen Y S, Chen J R, Liu Y, Zhou H J. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe? detection[J]. J. Mater. Chem. A, 2015,3(2):542-546. doi: 10.1039/C4TA05483K
Pu Z F, Wen Q L, Yang Y J, Cui X M, Ling J, Liu P, Cao Q E. Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe3+ ions[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2020,229117944. doi: 10.1016/j.saa.2019.117944
Shi R G, Huang L, Duan X X, Sun G H, Yin G, Wang R Y, Zhu J J. Selective imaging of cancer cells with a pH-activatable lysosome-targeting fluorescent probe[J]. Anal. Chim. Acta, 2017,988:66-73. doi: 10.1016/j.aca.2017.07.055
Yin W Z, Xuan D H, Deng B H, Zhou M X, Ma F, Zhang J Q, Lu Y. Vaccine adjuvant platform and fluorescence imaging of amphiphilic γ-PGA-IMQ-LA-FL conjugates[J]. Mater. Adv., 2022,3(5):2505-2514. doi: 10.1039/D1MA01169C
Peide Zhu , Yangjia Liu , Yaoyao Tang , Siqi Zhu , Xinyang Liu , Lei Yin , Quan Liu , Zhiqiang Yu , Quan Xu , Dixian Luo , Juncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Qiang Li , Jiangbo Fan , Hongkai Mu , Lin Chen , Yongzhen Yang , Shiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Jianye Kang , Xinyu Yang , Xuhao Yang , Jiahui Sun , Yuhang Liu , Shutao Wang , Wenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Kangmin Wang , Liqiu Wan , Jingyu Wang , Chunlin Zhou , Ke Yang , Liang Zhou , Bijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
Rui Cheng , Xin Huang , Tingting Zhang , Jiazhuang Guo , Jian Yu , Su Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
Jianqiu Li , Yi Zhang , Songen Liu , Jie Niu , Rong Zhang , Yong Chen , Yu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Fengkai Zou , Borui Su , Han Leng , Nini Xin , Shichao Jiang , Dan Wei , Mei Yang , Youhua Wang , Hongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Inset: photographs of the GOQDs at pH 5.5 or 7.4 under UV light of 365 nm.
ρGOQDs=3.5 μg·mL-1, concentrations of all other competing substances were 10 μmol·L-1, λex=515 nm.
(-) and (+) controls were the RBCs in PBS and DI water, respectively.
The cell images were obtained under excitation at 405 or 488 nm.