Citation: Yun-Shang YANG, Fan-Fan QIN, Yi-Zhen YUAN, Ying-Peng ZHANG, Yu-Ning LIANG. Synthesis of a Zr-based organometallic gel with effective adsorption of Pb(Ⅱ) ion[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1303-1314. doi: 10.11862/CJIC.2023.104 shu

Synthesis of a Zr-based organometallic gel with effective adsorption of Pb(Ⅱ) ion

Figures(11)

  • In this work, the overall formation of gel groups was studied by using the synthesized 4, 4, 4-tricarboxytri-phenylamine (H3TCA) as the main ligand. A supramolecular amorphous zirconium - based organometallic gel (Zr-MOG) was synthesized by the solvothermal method. Amorphous Zr-MOG was synthesized by gelation of UIO -66 (i.e. Zr- MOF) by a simple method of constant time- controlled crystallization. The gelation of precursor ZrCl4 was promoted by changing the ratio of metal ligands. The precursor ZrCl4 forms oxide and hydroxide bridges at room temperature, which promotes the formation of [Zr6O4(OH)4]12+ clusters and induces rapid and excessive nucleation rates. The results showed that the prepared Zr-MOG had the multi-layer structure of gel soft materials and amorphous polymer network, and had good adsorption capacity for Pb(Ⅱ). A series of studies on its adsorption properties were made to verify its recyclability and reusability. In addition, the transformation between crystalline MOF and highly dispersed amorphous MOG was successfully realized by using glacial acetic acid as a crystallization accelerator.
  • 加载中
    1. [1]

      RAN X Z, LIU H Y, TU Y, GU X F, YU E J. Atmospheric TSP micromorphology, heavy metal distribution characteristics and health risk assessment—Take the typical small watershed of high geological background and pollution superposition area in northwest Guizhou as an example[J]. Ecology and Environmental Sciences, 2021,30(12):2339-2350. doi: 10.16258/j.cnki.1674-5906.2021.12.009

    2. [2]

      Oladoye P O. Natural, low- cost adsorbents for toxic Pb(Ⅱ) ion sequestration from (waste) water: A state-of-the-art review[J]. Sep. Purif. Technol., 2022,287132130.

    3. [3]

      Sun L Z, Zheng Y Y, Yu X N. Flocculation - bio - treatment of heavy metals - vacuum preloading of the river sediments[J]. Ecotox. Environ. Safe., 2020,201110810. doi: 10.1016/j.ecoenv.2020.110810

    4. [4]

      Koliehova A, Trokhymenko H, Melnychuk S, Gomelya M. Treatment of wastewater containing a mixture of heavy metal ions (copper - zinc, copper - nickel) using ion - exchange methods[J]. J. Ecol. Eng., 2019,20:146-151.

    5. [5]

      Karunakaran A, Chaturvedi A, Ali J, Singh R, Agarwal S, Garg M. Response surface methodology - based modeling and optimization of chromium removal using spiral-wound reverse-osmosis membrane setup[J]. Int. J. Environ. Sci. Technol., 2022,19:5999-6010. doi: 10.1007/s13762-021-03422-y

    6. [6]

      Cho K, Myung E, Kim H, Park C, Choi N, Park C. Effect of soil washing solutions on simultaneous removal of heavy metals and arsenic from contaminated soil[J]. Int. J. Environ. Res. Public Health, 2020,173133. doi: 10.3390/ijerph17093133

    7. [7]

      Qasem N A, Mohammed R H, Lawal D U. Removal of heavy metal ions from wastewater: A comprehensive and critical review[J]. NPJ Clean Water., 2021,4(1)36. doi: 10.1038/s41545-021-00127-0

    8. [8]

      Perumal S, Atchudan R, Edison T N J I, Babu R S, Karpagavinayagam P, Vedhi C. A short review on recent advances of hydrogel-based adsorbents for heavy metal ions[J]. Metals, 2021,11864. doi: 10.3390/met11060864

    9. [9]

      HU Z J, WANG Y N, LIANG H F, WANG X N. Preparation of graphite oxide / chitosan composite hydrogel and its adsorption properties for zinc - lead ions[J]. Technology & Development of Chemical, 2021,50(5):9-14. doi: 10.3969/j.issn.1671-9905.2021.05.003

    10. [10]

      LIU J L, GUO Y, HE X S, XI Y H. Preparation of silanized red mud and its adsorption performance analysis of lead ions in water[J]. Environmental Engineering, 2019,37(11):36-44. doi: 10.13205/j.hjgc.201911006

    11. [11]

      Sriram G, Bendre A, Mariappan E, Altalhi T, Kigga M, Ching Y C, Jung H Y, Bhaduri B, Kurkuri M. Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism—A review[J]. Sustain. Mater. Technol., 2021,31e00378.

    12. [12]

      Shamim M A, Zia H, Zeeshan M, Khan M Y, Shahid M. Metal organic frameworks (MOFs) as a cutting-edge tool for the selective detection and rapid removal of heavy metal ions from water: Recent progress[J]. J. Environ. Chem. Eng., 2021,10(1)106991.

    13. [13]

      Zeeshan M, Shahid M. State of the art developments and prospects of metal - organic frameworks for energy applications[J]. Dalton Trans., 2022,51:1675-1723. doi: 10.1039/D1DT03113A

    14. [14]

      Adegoke K A, Maxakato N W. Porous metal - organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion[J]. Mater. Today Energy, 2021,21100816. doi: 10.1016/j.mtener.2021.100816

    15. [15]

      Ghanbari T, Abnisa F, Wan Daud W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption[J]. Sci. Total Environ., 2020,707135090. doi: 10.1016/j.scitotenv.2019.135090

    16. [16]

      Zhou Z, Mukherjee S, Hou S, Li W, Elsner M, Fischer R A. Porphyrinic MOF film for multifaceted electrochemical sensing[J]. Angew. Chem. Int. Ed., 2021,60:20551-20557. doi: 10.1002/anie.202107860

    17. [17]

      Zhou K, Zhang C, Xiong Z, Chen H Y, Li T, Ding G, Yang B, Liao Q, Zhou Y, Han S T. Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor[J]. Adv. Funct. Mater., 2020,302001296. doi: 10.1002/adfm.202001296

    18. [18]

      El-Yazeed W A, Abou El-Reash Y, Elatwy L, Ahmed A I. Facile fabrication of bimetallic Fe-Mg MOF for the synthesis of xanthenes and removal of heavy metal ions[J]. RSC Adv., 2020,10:9693-9703. doi: 10.1039/C9RA10300G

    19. [19]

      Singh S, Kaushal S, Kaur J, Kaur G, Mittal S K, Singh P P. CaFu-MOF as an efficient adsorbent for simultaneous removal of imidacloprid pesticide and cadmium ions from wastewater[J]. Chemosphere, 2021,272129648. doi: 10.1016/j.chemosphere.2021.129648

    20. [20]

      Shi M B, Lin D W, Huang R L, Qi W, Su R X, He Z M. Construction of a mercapto - functionalized Zr - MOF/melamine sponge composite for the efficient removal of oils and heavy metal ions from water[J]. Ind. Eng. Chem. Res., 2020,59:13220-13227. doi: 10.1021/acs.iecr.0c00731

    21. [21]

      Mu W J, Du S Z, Li X L, Yu Q H, Hu R, Wei H Y, Yang Y C, Peng S M. Efficient and irreversible capture of strontium ions from aqueous solution using metal - organic frameworks with ion trapping groups[J]. Dalton Trans., 2019,48:3284-3290. doi: 10.1039/C9DT00434C

    22. [22]

      TANG J L. Study on the new MOF adsorbent preparation and its adsorption properties. Kunming: Kunming University of Technology, 2022.

    23. [23]

      Xie Y, Ye G Q, Peng S P, Jiang S Y, Wang Y, Hu X Y. Postsynthetic functionalization of water stable zirconium metal organic frameworks for high performance copper removal[J]. Analyst, 2019,144:4552-4558. doi: 10.1039/C9AN00981G

    24. [24]

      Cao J, Yang Z H, Xiong W P, Zhou Y Y, Wu Y, Jia M Y, Peng H H, Yuan Y X, Xiang Y P, Zhou C Y. Three -dimensional MOF -derived hierarchically porous aerogels activate peroxymonosulfate for efficient organic pollutants removal[J]. Chem. Eng. J., 2022,427130830. doi: 10.1016/j.cej.2021.130830

    25. [25]

      Barcus K, Cohen S M. Free - standing metal - organic framework (MOF) monolayers by self - assembly of polymer - grafted nanoparticles[J]. Chem. Sci., 2020,11:8433-8437. doi: 10.1039/D0SC03318A

    26. [26]

      Mollick S, Mandal T N, Jana A, Fajal S, Ghosh S K. A hybrid blue perovskite@metal - organic gel (MOG) nanocomposite: Simultaneous improvement of luminescence and stability[J]. Chem. Sci., 2019,10:10524-10530. doi: 10.1039/C9SC03829A

    27. [27]

      Jia J, Qin Z S, Dong W W, An J R, Si X J, Wu Y P, Liu Y L, Zhao J, Li D S. Controlled fabrication of Ag nanoparticles in situ embedded in metal organic gel (MOG) as an efficient recyclable catalyst for the reduction of nitrophenol compounds[J]. Inorg. Chem. Commun., 2021,129108633. doi: 10.1016/j.inoche.2021.108633

    28. [28]

      Gu D X, Yang W T, Lin D Y, Qin X D, Yang Y H, Wang F X, Pan Q H, Su Z M. Water-stable lanthanide-based metal-organic gel for the detection of organic amines and white - light emission[J]. J. Mater. Chem. C, 2020,8:13648-13654. doi: 10.1039/D0TC03266B

    29. [29]

      Wang Y J, Wei J H, Li S, Luo J Y, Chang X W, Sun Y Y, Pi Q, Wu Y P, Li D S. Convenient synthesis of polymetallic metal-organic gels for efficient methanol electro-oxidation[J]. Inorg. Chem. Front., 2021,8:927-933. doi: 10.1039/D0QI01523G

    30. [30]

      Wu D N, Li X C, Zheng J, He C J, Zhang J, Xie Y, Li Y F, Tang B H J, Rui Y C, Liu F J. Self-healable metal-organic gel membranes as anodes with high lithium storage[J]. Electrochim. Acta, 2021,386138334. doi: 10.1016/j.electacta.2021.138334

    31. [31]

      Hong Y, Gao Z L, Chen M J, Hao J C, Dong S L. Metal- organic gels of catechol - based ligands with Ni(Ⅱ) acetate for dye adsorption[J]. Langmuir, 2018,34:9435-9441. doi: 10.1021/acs.langmuir.8b01065

    32. [32]

      Li Y, Guo M X, He L, Huang C Z, Li Y F. Green one-pot synthesis of silver nanoparticles/metal - organic gels hybrid and its promising SERS application[J]. ACS Sustain. Chem. Eng., 2019,7:5292-5299. doi: 10.1021/acssuschemeng.8b06305

    33. [33]

      REN W J. Study on the removal of organic pollutants in water by metal-organic frame material/cellulose composite aerogel. Hangzhou: Zhejiang Sci-Tech University, 2019.

    34. [34]

      Garai A, Goswami A, Biradha K. In situ conversion of a MOG to a crystalline MOF: a case study on solvent - dependent gelation and crystallization[J]. Chem. Commun., 2022,58:11414-11417. doi: 10.1039/D2CC04724A

    35. [35]

      Wang J, He C, Wu P Y, Duan C Y. An amide - containing metalorganic tetrahedron responding spin - trapping reaction through fluorescent enhancement manner for biological imaging of NO in living cells[J]. J. Am. Chem. Soc., 2011,133:12402-12405.  

    36. [36]

      Vijayaraghavan K, Teo T T, Balasubramanian R, Joshi U M. Application of sargassum biomass to remove heavy metal ions from synthetic multi - metal solutions and urban storm water runoff[J]. J. Hazard. Mater., 2008,164:1019-1023.

    37. [37]

      Chen C, Wang J L. Influence of metal ionic characteristics on their biosorption capacity by saccharomyces cerevisiae[J]. Appl. Microbiol. Biot., 2006,74:911-917.

    38. [38]

      Zhu Y H, Hu J, Wang J L. Competitive adsorption of Pb(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) onto xanthate - modified magnetic chitosan[J]. J. Hazard. Mater, 2012,221-222:155-161. doi: 10.1016/j.jhazmat.2012.04.026

    39. [39]

      CHEN C, WANG J L. The relationship between the biosorption capacity of heavy metal ions and the properties of the ions[J]. Environmental Science, 2007,28(8):1732-1737. doi: 10.3321/j.issn:0250-3301.2007.08.015

    40. [40]

      Liu Y, Liu Z C, Gao J, Dai J D, Han J, Wang Y, Xie J M, Yan Y S. Selective adsorption behavior of Pb(Ⅱ) by mesoporous silica SBA-15-supported Pb(Ⅱ) -imprinted polymer based on surface molecularly imprinting technique[J]. J. Hazard. Mater., 2011,186:197-205. doi: 10.1016/j.jhazmat.2010.10.105

    41. [41]

      Ifthikar J, Wang J, Wang Q L, Wang T, Wang H B, Khan A, Jawad A, Sun T T, Jiao X, Chen Z T. Highly efficient lead distribution by magnetic sewage sludge biochar: Sorption mechanisms and bench applications[J]. Bioresource Technol., 2017,238:399-406. doi: 10.1016/j.biortech.2017.03.133

    42. [42]

      Baseri H, Tizro S. Treatment of nickel ions from contaminated water by magnetite based nanocomposite adsorbents: Effects of thermodynamic and kinetic parameters and modeling with Langmuir and Freundlich isotherms[J]. Process Saf. Environ. Protect., 2017,109:465-477. doi: 10.1016/j.psep.2017.04.022

    43. [43]

      Joshi N C, Gaul A, Singh A. Synthesis, Characterisations, Adsorptive performances and photo-catalytic activity of Fe3O4-SiO2 based nanosorbent (Fe3O4-SiO2 BN). J. Inorg. Organomet[J]. Polym. Mater., 2020,30:4416-4425.

    44. [44]

      Jiang Q, Xie W L, Han S Y, Wang Y F, Zhang Y. Enhanced adsorption of Pb(Ⅱ) onto modified hydrochar by polyethyleneimine or H3PO4: An analysis of surface property and interface mechanism[J]. J. Mol. Liq., 2019,583123962.

    45. [45]

      Yang K L, Lou Z M, Fu R Q, Zhou J S, Xu J, Baig S A, Xu H X. Multiwalled carbon nanotubes incorporated with or without amino groups for aqueous Pb(Ⅱ) removal: Comparison and mechanism study[J]. J. Environ. Chem. Eng., 2018,260:149-158.

    46. [46]

      Li R F, Liu Y Q, Lan G H, Qiu H Y, Xu B, Xu Q X, Sun N Y, Zhang L H. Pb(Ⅱ) adsorption characteristics of magnetic GO-hydroxyapatite and the contribution of GO to enhance its acid resistance[J]. J. Mater. Chem. A, 2021,9105310.

    47. [47]

      Efome J E, Rana D, Matsuura T, Lan C Q. Metal-organic frameworks supported on nanofibers to remove heavy metals[J]. J. Hazard. Mater., 2018,6:4550-4555.

    48. [48]

      Laus R, Costa T G, Szpoganicz B, Favere V T. Adsorption and desorption of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) ions using chitosan crosslinked with epichlorohydrin - triphosphate as the adsorbent[J]. J. Hazard. Mater., 2010,183:233-241. doi: 10.1016/j.jhazmat.2010.07.016

    49. [49]

      Zhou G Y, Luo J M, Liu C B, Chu L, Ma J H, Tang Y H, Zeng Z B, Luo S L. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent[J]. Int. J. Environ. Res., 2016,89:151-160.

    50. [50]

      Issaoui H, Sallem F, Lafaille J, Grassl B, Bouhtoury C E. Biosorption of heavy metals from water onto phenolic foams based on tannins and lignin alkaline liquor[J]. Int. J. Environ. Res., 2021,15:369-381. doi: 10.1007/s41742-021-00313-5

    51. [51]

      SONG X. Preparation, adsorption, and catalytic properties of zirconium based metal organic skeleton material UiO - 66. Mianyang: South West University of Science and Technology, 2020.

    52. [52]

      WANG T. Visualized adsorption removal and photocatalytic hydrogen production performance of Zr based MOFs material UiO - 66 - NH2. Nanchang: Nanchang Hangkong University, 2020.

  • 加载中
    1. [1]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    2. [2]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    17. [17]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    18. [18]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    19. [19]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(11)
  • Abstract views(1274)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return