Application of MXene for precise cancer diagnosis and treatment
- Corresponding author: Yi-Min SUN, ymsun@wit.edu.cn Fei XIAO, xiaofei@hust.edu.cn
Citation: Yi-Min SUN, Zhan-Peng WANG, Peng-Fei TONG, Fei XIAO. Application of MXene for precise cancer diagnosis and treatment[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1441-1462. doi: 10.11862/CJIC.2023.103
Huang W, Xu Y, Wang Z P, Liao K, Zhang Y, Sun Y M. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells[J]. Talanta, 2022,249123612. doi: 10.1016/j.talanta.2022.123612
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Adv Mater., 2014,27(7):992-1005.
Iravani S, Varma R S. Greener synthesis of lignin nanoparticles and their applications[J]. Green Chem., 2020,22(3):612-636. doi: 10.1039/C9GC02835H
Iravani S, Varma R S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots[J]. A review. Environ. Chem. Lett., 2020,18(3):703-727. doi: 10.1007/s10311-020-00984-0
Chen Z Y, Asif M, Wang R C, Li Y, Zeng X, Yao W T, Sun Y M, Liao K. Recent trends in synthesis and applications of porous MXene assemblies: A topical review[J]. Chem. Rec., 2022,22(3)e202100261.
Nasrollahzadeh M, Sajadi S M, Issaabadi Z, Sajjadi M. Biological sources used in green nanotechnology//Nasrollahzadeh M, Sajadi S M, Sajjadi M, Issaabadi Z, Atarod M. An introduction to green nanotechnology[J]. Elsevier, 2019:81-111.
Wang R C, Luo S H, Xiao C, Chen Z Y, Li H S, Asif M, Chan V, Liao K, Sun Y M. MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance[J]. Electrochim. Acta, 2021,386138420. doi: 10.1016/j.electacta.2021.138420
Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification[J]. ACS Appl. Mater. Interfaces, 2019,11(40):36589-36597. doi: 10.1021/acsami.9b10606
CHEN L, FENG W, CHEN Y.. MXene-based medical materials in materdicine[J]. Materials China, 2022,41(9):758-768.
Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nat. Rev. Mater., 2017,2(2):1-17.
Ding L, Li L, Liu Y C, Wu Y, Lu Z, Deng J J, Wei Y Y, Caro J, Wang H H. Effective ion sieving with Ti3C2TX MXene membranes for production of drinking water from seawater[J]. Nat. Sustain., 2020,3(4):296-302. doi: 10.1038/s41893-020-0474-0
SUN Y M, LI H S, CHEN Z Y, WANG D, WANG Z P, XIAO F. The application of MXene in electrochemical sensor[J]. Prog. Chem., 2022,34(2):259-271.
Zheng W, Zhang P G, Tian W B, Qin X, Zhang Y M, Sun Z M. Alkali treated Ti3C2TX MXenes and their dye adsorption performance[J]. Mater. Chem. Phys., 2018,206:270-276. doi: 10.1016/j.matchemphys.2017.12.034
Yin W Y, Yu J, Lv F, Yan L, Zheng L R, Gu Z J, Zhao Y L. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications[J]. ACS Nano, 2016,10(12):11000-11011. doi: 10.1021/acsnano.6b05810
Rasool K, Mahmoud K A, Johnson D J, Helal M, Berdiyorov G R, Gogotsi Y. Efficient antibacterial membrane based on two-dimensional Ti3C2TX (MXene) nanosheets[J]. Sci. Rep., 2017,7(1)1598. doi: 10.1038/s41598-017-01714-3
LI C W, AN Q, CHEN C, LI D W, ZHANG W, FU Y J.. Preparation of MXenes and their photothermal properties for cancer therapy[J]. Polymer Bulletin, 2023,36(2):172-182. doi: 10.14028/j.cnki.1003-3726.2023.02.004
Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects[J]. Chem. Eng. J., 2020,388124340. doi: 10.1016/j.cej.2020.124340
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma R S. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives[J]. J. Hazard. Mater., 2021,401123401. doi: 10.1016/j.jhazmat.2020.123401
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma R S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review[J]. Carbohydr. Polym., 2021,251116986. doi: 10.1016/j.carbpol.2020.116986
Gan D F, Huang Q, Dou J B, Huang H Y, Chen J Y, Liu M Y, Wen Y Q, Yang Z Y, Zhang X Y, Wei Y. Bioinspired functionalization of MXenes (Ti3C2TX) with amino acids for efficient removal of heavy metal ions[J]. Appl. Surf. Sci., 2020,504144603. doi: 10.1016/j.apsusc.2019.144603
Zhan X X, Si C, Zhou J, Sun Z M. MXene and MXene-based composites: synthesis, properties and environment-related applications[J]. Nanoscale Horiz., 2020,5(2):235-258. doi: 10.1039/C9NH00571D
Lin H, Gao S S, Dai C, Chen Y, Shi J L. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-Ⅰ and NIR-Ⅱ biowindows[J]. J. Am. Chem. Soc., 2017,139(45):16235-16247. doi: 10.1021/jacs.7b07818
Dai C, Chen Y, Jing X X, Xiang L H, Yang D Y, Lin H, Liu Z, Han X X, Wu R. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation[J]. ACS Nano, 2017,11(12):12696-12712. doi: 10.1021/acsnano.7b07241
Lin H, Chen Y, Shi J. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead[J]. Adv. Sci., 2018,5(10)1800518. doi: 10.1002/advs.201800518
George S M, Kandasubramanian B. Advancements in MXene-polymer composites for various biomedical applications[J]. Ceram. Int., 2020,46(7):8522-8535. doi: 10.1016/j.ceramint.2019.12.257
Feng W, Wang R Y, Zhou Y D Ding L, Gao X, Zhou B G, Hu P, Chen Y. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia[J]. Adv. Funct. Mater., 2019,29(22)1901942. doi: 10.1002/adfm.201901942
Szuplewska A, Kulpińska D, Dybko A, Chudy M, Jastrzębska A M, Olszyna A, Brzózka Z. Future applications of MXenes in biotechnology, nanomedicine, and sensors[J]. Trends Biotechnol., 2020,38(3):264-279. doi: 10.1016/j.tibtech.2019.09.001
Cheng L, Li X, Zhang H W, Xiang Q J. Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation[J]. J. Phys. Chem. Lett., 2019,10(12):3488-3494. doi: 10.1021/acs.jpclett.9b00736
WANG C, LIU Q H, QI C Y, WANG Z Y, ZHAO X L, YANG X W.. Synthesis and supercapacitor performances of 0D/2D MXene composite membrane[J]. Chinese J. Inorg. Chem., 2022,38(9):1707-1715.
Lin H, Wang X G, Yu L D, Chen Y, Shi J L. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Lett., 2017,17(1):384-391. doi: 10.1021/acs.nanolett.6b04339
Shen R C, Lu X Y, Zheng Q Q, Chen Q, Ng Y H, Zhang P, Li X. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts[J]. Sol. RRL, 2021,5(7)2100177. doi: 10.1002/solr.202100177
Xiao R, Zhao C X, Zou Z Y, Chen Z P, Tian L, Xu H T, Tang H, Liu Q Q, Lin Z X, Yang X F. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution[J]. Appl. Catal. B-Environ., 2020,268118382. doi: 10.1016/j.apcatb.2019.118382
PENG Q M, XIAO Z H, YANG Y B, YUAN Q.. Recent progress in flexible and wearable sensors based on two-dimensional materials[J]. Journal of Analytical Science, 2021,37(2):243-251. doi: 10.13526/j.issn.1006-6144.2021.02.019
Sarhadi V K, Armengol G. Molecular biomarkers in cancer[J]. Biomolecules, 2022,12(8)1021. doi: 10.3390/biom12081021
Novak D, Utikal J. New biomarkers in cancers[J]. Cancers, 2021,13(4)708. doi: 10.3390/cancers13040708
Huang W, Xu Y, Sun Y M. Functionalized graphene fiber modified with MOF-derived rime-like hierarchical nanozyme for electrochemical biosensing of H2O2 in cancer cells[J]. Front. Chem., 2022,10873187. doi: 10.3389/fchem.2022.873187
Nair M, Sandhu S S, Sharma A K. Cancer molecular markers: A guide to cancer detection and management[J]. Semin. Cancer Biol., 2018,52:39-55.
Alex S A, Chandrasekaran N, Mukherjee A. Gold nanorod-based fluorometric ELISA for the sensitive detection of a cancer biomarker[J]. New J. Chem., 2018,42:15852-15859. doi: 10.1039/C8NJ03467B
YANG S, LU Y Q, SUN F, CHEN Y K.. Nanopores-based single molecule analysis technology and its recent progress[J]. Materials Review, 2020,34(Z2):177-181.
Tiwari R, Lajkosz K, Berjaoui M B, Qaoud Y, Kenk M, Woffendin C, Caron P, Guillemette C, Fleshner N. Variability in testosterone measurement between radioimmunoassay (RIA), chemiluminescence assay (CLIA) and liquid chromatography-tandem mass spectrometry (MS) among prostate cancer patients on androgen deprivation therapy (ADT)[J]. Urol. Oncol.-Semin. Orig. Investig., 2022,40:193.e15-193.e20.
Luo K, Zhao C J, Luo Y, Pan C B, Li J P. Electrochemical sensor for the simultaneous detection of CA72-4 and CA19-9 tumor markers using dual recognition via glycosyl imprinting and lectin-specific binding for accurate diagnosis of gastric cancer[J]. Biosens. Bioelectron., 2022,216114672. doi: 10.1016/j.bios.2022.114672
Hong R, Sun H Y, Li D J, Yang W H, Fan K, Liu C, Dong L X, Wang G F. A review of biosensors for detecting tumor markers in breast cancer[J]. Life-Basel, 2022,12(3)342. doi: 10.3390/life12030342
Xu J Q, Zhang B, Zhang Y, Mai L Y, Hu W H, Chen C J, Liu J T, Zhu G X. Recent advances in disease diagnosis based on electrochemical-optical dual-mode detection method[J]. Talanta, 2022,253124037.
Zhang , Z L, Peng M S, Li D, Yao J, Li Y X, Wu B H, Wang L S, Xu Z L. Carbon material based electrochemical immunosensor for gastric cancer markers detection[J]. Front. Chem., 2021,9:702-708.
Sobczuk P, Lomiak M, Cudnoch-Jędrzejewska A. Dopamine D1 receptor in cancer[J]. Cancers, 2020,12(11):3232-3254. doi: 10.3390/cancers12113232
Liu J B, Liu J, Shang Y H, Xu J Q, Wang X Y, Zheng J B. An electrochemical immunosensor for simultaneous detection of two lung cancer markers based on electroactive probes[J]. J. Electroanal. Chem., 2022,919:116559-116566. doi: 10.1016/j.jelechem.2022.116559
Ma N, Zhang T, Fan D W, Kuang X, Ali A, Wu D, Wei Q. Triple amplified ultrasensitive electrochemical immunosensor for alpha fetoprotein detection based on MoS2@Cu2O-Au nanoparticles[J]. Sens. Actuator B-Chem., 2019,297:126821-126829. doi: 10.1016/j.snb.2019.126821
Moradi A, Srinivasan S, Clements J, Batra J. Beyond the biomarker role: Prostate-specific antigen (PSA) in the prostate cancer microenvironment[J]. Cancer Metastasis Rev., 2019,38:333-346. doi: 10.1007/s10555-019-09815-3
Li C, Zhang M M, Zhang Z, Tang J L, Zhang B L. Microcantilever aptasensor for detecting epithelial tumor marker Mucin 1 and diagnosing human breast carcinoma MCF-7 Cells[J]. Sens. Actuator B-Chem., 2019,297126759. doi: 10.1016/j.snb.2019.126759
Liu X, Chen Z Q, Han B, Su C L, Han Q, Chen W Z. Biosorption of copper ions from aqueous solution using rape straw powders: Optimization, equilibrium and kinetic studies[J]. Ecotox. Environ. Safe., 2018,150:251-259. doi: 10.1016/j.ecoenv.2017.12.042
Wang H Y, Sun J J, Lu L, Yang X, Xia J J, Zhang F F, Wang Z H. Competitive electrochemical aptasensor based on a CDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1[J]. Anal. Chim. Acta, 2020,1094:18-25. doi: 10.1016/j.aca.2019.10.003
LIN J H, ZHANG H H, CHU P F.. A new dual immunoassay for the determination of α-fetoprotein and carcinoembryonic antigen based on chemiluminescence signal amplification by functional graphite oxide[J]. Acta Chim. Sin., 2012,70(22):2372-2376.
Gugoasa L A, Stefan-van Staden R-I, Al-Ogaidi A J M, Stanciu-Gavan C, van Staden J F, Rosu M-C, Pruneanu S. Molecular recognition of colon cancer biomarkers: P53, KRAS and CEA in whole blood samples[J]. J. Electrochem. Soc., 2017,164(9):B443-B447. doi: 10.1149/2.1191709jes
Kurlinkus, Ger, Kaupinis, Jasiunas, Valius, Sileikis, A. CEACAM6's role as a chemoresistance and prognostic biomarker for pancreatic cancer: A comparison of CEACAM6's diagnostic and prognostic capabilities with those of CA19-9 and CEA[J]. Life-Basel, 2021,11(6)542. doi: 10.3390/life11060542
Tang S F, Zhou F, Sun Y F, Wei L L, Zhu S B, Yang R Q, Huang Y Y, Yang J Q. CEA in breast ductal secretions as a promising biomarker for the diagnosis of breast cancer: A systematic review and meta-analysis[J]. Breast Cancer, 2016,23(6):813-819. doi: 10.1007/s12282-016-0680-9
Li N L, Jia L P, Ma R, N , Jia W L, Lu Y Y, Shi S S, Wang H S. A novel sandwiched electrochemiluminescence immunosensor for the detection of carcinoembryonic antigen based on carbon quantum dots and signal amplification[J]. Biosens. Bioelectron., 2017,89:453-460. doi: 10.1016/j.bios.2016.04.020
Kumar S, Lei Y, Alshareef N H, Quevedo-Lopez M A, Salama K N. Biofunctionalized two-dimensional Ti3C2MXenes for ultrasensitive detection of cancer biomarker[J]. Biosens. Bioelectron., 2018,121:243-249. doi: 10.1016/j.bios.2018.08.076
Wu Q, Li N B, Wang Y, Xu Y C, Wu J D, Jia G R, Ji F J, Fang X D, Chen F F, Cui X Q. Ultrasensitive and selective determination of carcinoembryonic antigen using multifunctional ultrathin amino-functionalized Ti3C2-MXene nanosheets[J]. Anal. Chem., 2020,92(4):3354-3360. doi: 10.1021/acs.analchem.9b05372
Wu Q, Li N B, Wang Y, Liu Y, Xu Y C, Wei S, Wu J D, Jia G R, Fang X D, Chen F F, Cui X Q. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection[J]. Biosens. Bioelectron., 2019,144111697. doi: 10.1016/j.bios.2019.111697
Wei R, Wong J P C, Kwok H F. Osteopontin—A promising biomarker for cancer therapy[J]. J. Cancer, 2017,8(12):2173-2183. doi: 10.7150/jca.20480
Gimba E R P, Brum M C M, De Moraes G N. Full-length osteopontin and its splice variants as modulators of chemoresistance and radioresistance (review)[J]. Int. J. Oncol., 2019,54(2):420-430.
Zhou S J, Gu C X, Li Z Z, Yang L Y, He L H, Wang M H, Huang X Y, Zhou N, Zhang Z H. Ti3C2TX MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin[J]. Appl. Surf. Sci., 2019,498143889. doi: 10.1016/j.apsusc.2019.143889
Chen H X, Mei Q H, Jia S S, Koh K, Wang K M, Liu X J. High specific detection of osteopontin using a three-dimensional copolymer layer support based on electrochemical impedance spectroscopy[J]. Analyst, 2014,139(18):4476-4481. doi: 10.1039/C4AN00576G
Stefanius K, Servage K, Orth K. Exosomes in cancer development[J]. Curr. Opin. Genet. Dev., 2021,66:83-92. doi: 10.1016/j.gde.2020.12.018
Soung Y H, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics[J]. Cancers, 2017,9(1)8.
Zhang H X, Wang Z H, Zhang Q X, Wang F, Liu Y. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes[J]. Biosens. Bioelectron., 2019,124:184-190.
Fang D D, Zhao D D, Zhang S P, Huang Y T, Dai H, Lin Y Y. Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing[J]. Sens. Actuator B-Chem., 2020,305127544. doi: 10.1016/j.snb.2019.127544
Borer J S, Simon L S. Cardiovascular and gastrointestinal effects of COX-2 inhibitors and NSAIDs: Achieving a balance[J]. Arthritis Res. Ther., 2005,7(4):14-22.
Yang P Y, Chan D N, Felix E, Cartwright C, Menter D G, Madden T, Klein R D, Fischer S M, Newman R A. Formation and antiproliferative effect of prostaglandin E3 from eicosapentaenoic acid in human lung cancer cells[J]. J. Lipid Res., 2004,45(6):1030-1039. doi: 10.1194/jlr.M300455-JLR200
Sadiq M, Pang L, Johnson M, Sathish V, Zhang Q, Wang D. 2D nanomaterial, Ti3C2 MXene-based sensor to guide lung cancer therapy and management[J]. Biosensors, 2021,11(2)40. doi: 10.3390/bios11020040
Cheng J M, Hu K, Liu Q R, Liu Y J, Yang H X, Kong J M. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti3C2TX- MXene as enhancer and covalent organic frameworks as labels[J]. Anal. Bioanal. Chem., 2021,413(9):2543-2551. doi: 10.1007/s00216-021-03212-y
Kim S E, Kim Y J, Song S, Lee K N, Seong W K. A simple electrochemical immunosensor platform for detection of apolipoprotein A1 (Apo-A1) as a bladder cancer biomarker in urine[J]. Sens. Actuator B-Chem., 2019,278:103-109. doi: 10.1016/j.snb.2018.09.068
Sharifuzzaman M, Barman S C, Zahed A, Sharma S, Yoon H, Nah J S, Kim H, Park J Y. An electrodeposited MXene-Ti3C2TX nanosheets functionalized by task-specific ionic liquid for simultaneous and multiplexed detection of bladder cancer biomarkers[J]. Small, 2020,16(46)2002517. doi: 10.1002/smll.202002517
Flatmark K, Høye E, Fromm B. MicroRNAs as cancer biomarkers[J]. Scand. J. Clin. Lab. Invest., 2016,76:S80-S83. doi: 10.1080/00365513.2016.1210330
Mohammadniaei M, Koyappayil A, Sun Y, Min J H, Lee M. Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification[J]. Biosens. Bioelectron., 2020,159112208. doi: 10.1016/j.bios.2020.112208
Monteleone N J, Lutz C S. MiR-708-5p Targets oncogenic prostaglandin E2 production to suppress a pro-tumorigenic phenotype in lung cancer cells[J]. Oncotarget., 2020,11(16):2464-2483.
Duan F H, Guo C P, Hu M Y, Song Y P, Wang M H, He L H, Zhang Z H, Pettinari R, Zhou L. M[J]. Construction of the 0D/2D heterojunction of Ti3C2TX MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA‑155. Sens. Actuator B-Chem., 2020,310127844.
Hu Y, Qiu Y, Yagüe E, Ji W, Liu J, Zhang J. MiRNA-205 targets VEGFA and FGF2 and regulates resistance to chemotherapeutics in breast cancer[J]. Cell Death Dis., 2016,7(6)e2291. doi: 10.1038/cddis.2016.194
Liu L, Wei Y M, Jiao S L, Zhu S Y, Liu X L. Biosensors and bioelectronics a novel label-free strategy for the ultrasensitive miRNA-182 detection based on MoS2/Ti3C2 nanohybrids[J]. Biosens. Bioelectron., 2019,137:45-51. doi: 10.1016/j.bios.2019.04.059
Konno M, Koseki J, Asai A, Yamagata A, Shimamura T, Motooka D, Okuzaki D, Kawamoto K, Mizushima T, Eguchi H, Takiguchi S, Satoh T, Mimori K, Ochiya T, Doki Y, Ofusa K, Mori M, Ishii H. Distinct methylation levels of mature microRNAs in gastrointestinal cancers[J]. Nat. Commun., 2019,10(1)3888. doi: 10.1038/s41467-019-11826-1
Yang X, Feng M H, Xia J F, Zhang F F, Wang Z H. An electrochemical biosensor based on AuNPs/Ti3C2 MXene three-dimensional nanocomposite for microRNA-155 detection by exonuclease Ⅲ-aided cascade target recycling[J]. J. Electroanal. Chem., 2020,878114669. doi: 10.1016/j.jelechem.2020.114669
Shan Y J, Ma J, Pan Y, Hu J L, Liu B, Jia L. LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1[J]. Cell Death Dis., 2018,9(7)722. doi: 10.1038/s41419-018-0759-7
Sreekumar A, Poisson L M, Rajendiran T M, Khan A P, Cao Q, Yu J, Laxman B, Mehra R, Lonigro R J, Li Y, Nyati M K, Ahsan A, Kalyana-sundaram S, Han B, Cao X, Byun J, Omenn G S, Ghosh D, Pennathur S, Alexander D C, Berger A, Shuster J R, Wei J T, Varambally S, Beecher C, Chinnaiyan A M. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression[J]. Nature, 2009,457(7231):910-914. doi: 10.1038/nature07762
Hroncekova S, Bertok T, Hires M, Jane E, Lorencova , L Vikartovska A, Tanvir A Kasak P, Tkac J. Ultrasensitive Ti3C2TX MXene/chitosan nanocomposite-based amperometric biosensor for detection of potential prostate cancer marker in urine samples[J]. Processes, 2020,8(5)580. doi: 10.3390/pr8050580
Catalona W J, Southwick P C, Slawin K M, Partin A W, Brawer M K, Flanigan R C, Patel A, Richie J P, Walsh P C, Scardino P T, Lange P H, Gasior G H, Loveland K G, Bray K R. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging[J]. Urology, 2000,56(2):255-260. doi: 10.1016/S0090-4295(00)00637-3
Medetalibeyoglu H, Kotan G, Atar N, Yola M L. A novel and ultrasensitive sandwich-type electrochemical immunosensor based on delaminated MXene@AuNPs as signal amplification for prostate specific antigen (PSA) detection and immunosensor validation[J]. Talanta, 2020,220121403. doi: 10.1016/j.talanta.2020.121403
Xu Q, Xu J K, Jia H Y, Tian Q Y, Liu P, Chen S X, Cai Y, Lu X Y, Duan X M, Lu L M. Hierarchical Ti3C2 MXene-derived sodium titanate nanoribbons/PEDOT for signal amplified electrochemical immunoassay of prostate specific antigen[J]. J. Electroanal. Chem., 2020,860113869. doi: 10.1016/j.jelechem.2020.113869
Soomro R A, Jawaid S, Zhang P, Han X, Hallam K R, Karakuş S, Kilislioğlu A, Xu B, Willander M. NiWO4-induced partial oxidation of MXene for photo-electrochemical detection of prostate-specific antigen[J]. Sens. Actuator B-Chem., 2021,328129074. doi: 10.1016/j.snb.2020.129074
Meira W V, Heinrich T A, Cadena S M S C, Martinez G R. Melanogenesis inhibits respiration in B16-F10 melanoma cells whereas enhances mitochondrial cell content[J]. Exp. Cell Res., 2017,350(1):62-72. doi: 10.1016/j.yexcr.2016.11.006
Liu Y, Huang S J, Li J N, Wang M H, Wang C B, Hu B, Zhou N, Zhang Z H. 0D/2D heteronanostructure—Integrated bimetallic CoCu-ZIF nanosheets and MXene-derived carbon dots for impedimetric cytosensing of melanoma B16-F10 Cells[J]. Microchim. Acta, 2021,188(3)69. doi: 10.1007/s00604-021-04726-z
Wang S, Song W L, Wei S H, Zeng S, Yang S H, Lei C Y, Huang Y, Nie Z, Yao S Z. Functional titanium carbide MXenes-loaded entropy-driven RNA explorer for long noncoding RNA PCA3 imaging in live cells[J]. Anal. Chem., 2019,91(13):8622-8629. doi: 10.1021/acs.analchem.9b02040
Hanahan D, Weinberg R A. Hallmarks of cancer: The next generation[J]. Cell, 2011,144(5):646-674. doi: 10.1016/j.cell.2011.02.013
DING H J, LI L L, WANG C, WANG G Z, ZHANG D.. Advances in the study of the relationship between reactive oxygen species and disease[J]. Chinese Journal of Clinical and Experimental Pathology, 2023,39(2):212-215. doi: 10.13315/j.cnki.cjcep.2023.02.016
TANG Z, WANG H Y, GUO D M.. Advances in the study of antioxidants and free radicals in the regulation of tumors[J]. Sichuan Medical Journal, 2022,43(9):932-935. doi: 10.16252/j.cnki.issn1004-0501-2022.09.016
LI X, SHI J Y, QIU S, WANG M F, LIU C L.. SOD1 inhibition regulates the ROS signaling transduction[J]. Prog. Chem., 2018,30(10):1475-1486.
Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat[J]. Rev. Drug Discov., 2009,8(7):579-591. doi: 10.1038/nrd2803
Zheng J S, Wang B, Jin Y Z, Weng B, Chen J C. Nanostructured MXene-based biomimetic enzymes for amperometric detection of superoxide anions from HepG2 cells[J]. Microchim. Acta, 2019,186(2)95. doi: 10.1007/s00604-018-3220-9
Zhao S F, Hu F X, Shi Z Z, Fu J J, Chen Y, Dai F Y, Guo C X, Li C M. 2‑D/2‑D heterostructured biomimetic enzyme by interfacial assembling Mn3(PO4)2 and MXene as a flexible platform for realtime sensitive sensing cell superoxide[J]. Nano Res., 2021,14(3):879-886. doi: 10.1007/s12274-020-3130-0
Lin T, Xu Y, Zhao A S, He W S, Xiao F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review[J]. Anal. Chim. Acta, 2022,1207339461. doi: 10.1016/j.aca.2022.339461
HAO X J, ZHAO S F, ZHANG C M, HU F X, YANG H B, GUO C X. Electrochemical biosensors fabricated using nanomaterials-based biomimetic enzymes for detection of reactive oxygen species: A review[J]. Materials Review, 2021,35(3):3183-3193.
Zhang Y, Xiao J, Lv Q, Wang L, Dong X L, Asif M, Ren J H, He W S, Sun Y M, Xiao F, Wang S. In situ electrochemical sensing and real-time monitoring live cells based on freestanding nanohybrid paper electrode assembled from 3D functionalized graphene framework[J]. ACS Appl. Mater. Interfaces, 2017,9(44):38201-38210. doi: 10.1021/acsami.7b08781
Zhang Y, Xiao J, Sun Y M, Wang L, Dong X L, Ren J H, He W S, Xiao F. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells[J]. Biosens. Bioelectron., 2018,100:453-461. doi: 10.1016/j.bios.2017.09.038
Wang L, Dong Y, Zhang Y, Zhang Z Y, Chi K, Yuan H, Zhao A S, Ren J H, Xiao F, Wang S. PtAu alloy nanoflowers on 3D porous ionic liquid functionalized graphene-wrapped activated carbon fiber as a flexible microelectrode for near-cell detection of cancer[J]. NPG Asia Mater., 2016,8(12)e337. doi: 10.1038/am.2016.189
Xu Q, Yuan H, Dong X L, Zhang Y, Asif M, Dong Z H, He W S, Ren J H, Sun Y M, Xiao F. Dual nanoenzyme modified microelectrode based on carbon fiber coated with AuPd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinic cancer samples[J]. Biosens. Bioelectron., 2018,107:153-162. doi: 10.1016/j.bios.2018.02.026
Yuan H, Zhao J Q, Wang Q J, Manoj D, Zhao A S, Chi K, Ren J H, He W S, Zhang Y, Sun Y M, Xiao F, Wang S. Hierarchical core-shell structure of 2D VS2@VC@N-Doped carbon sheets decorated by ultrafine Pd nanoparticles: Assembled in a 3D rosette-like array on carbon fiber microelectrode for electrochemical sensing[J]. ACS Appl. Mater. Interfaces, 2020,12(13):15507-15516. doi: 10.1021/acsami.9b21436
Sun Y M, Zeng W, Sun H L H, Chen D G, Chan V, Liao K. Inorganic/polymer-graphene hybrid gel as versatile electrochemical platform for electrochemical capacitor and biosensor[J]. Carbon, 2018,132:589-597. doi: 10.1016/j.carbon.2018.02.099
Huang W, Xu Y, Sun Y M. Functionalized graphene fiber modified with MOF-derived rime-like hierarchical nanozyme for electrochemical biosensing of H2O2 in cancer cells[J]. Front. Chem., 2022,10873187. doi: 10.3389/fchem.2022.873187
Sun Y M, He K, Zhang , Z F, Zhou A J, Duan H W. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode[J]. Biosens. Bioelectron., 2015,68:358-364. doi: 10.1016/j.bios.2015.01.017
Zhao A S, She J, Manoj D, Wang T Q, Sun Y M, Zhang Y, Xiao F. Functionalized graphene fiber modified by dual nanoenzyme: towards high-performance flexible nanohybrid microelectrode for electrochemical sensing in live cancer cells[J]. Sens. Actuator B-Chem., 2020,310127861. doi: 10.1016/j.snb.2020.127861
Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y M, Xiao F, Liu H F. Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: A textile sensor for H2O2 detection in clinical cancer tissues[J]. Chem. Eng. J., 2022,427131398. doi: 10.1016/j.cej.2021.131398
Wang T Q, Wu Y, She J, Xu Y, Zhang Y, Zhao A S, Manoj D, Xi J B, Sun Y M, Ren J H, Xiao F. 3D nitrogen-doped carbon nanofoam arrays embedded with PdCu alloy nanoparticles: assembling on flexible microelectrode for electrochemical detection in cancer cells[J]. Anal. Chim. Acta, 2021,1158338420. doi: 10.1016/j.aca.2021.338420
Zhang Y, Chi K, Xiao J, Xu Y, Zhao A S, Xu Y, Sun Y M, Xiao F, Wang S. Coral-like hierarchical structured carbon nanoscaffold with improved sensitivity for biomolecular detection in cancer tissue[J]. Biosens. Bioelectron., 2020,150111924. doi: 10.1016/j.bios.2019.111924
Tong P F, Asif M, Ajmal M, Aziz A, Sun Y M. A multicomponent polymer-metal-enzyme system as electrochemical biosensor for H2O2 detection[J]. Front. Chem., 2022,10411.
Zhao A S, She J, Xiao C, Xi J B, Xu Y, Manoj D, Sun Y M, Xiao F. Green and controllable synthesis of multi-heteroatoms co-doped graphene fiber as flexible and biocompatible microelectrode for in situ electrochemical detection of biological samples[J]. Sens. Actuator B-Chem., 2021,335129683. doi: 10.1016/j.snb.2021.129683
Asif M, Xiao F, Govindasamy M, Sun Y M. 2D nanoarchitectures for sensing/biosensing applications[J]. Front. Chem., 2022,10992793. doi: 10.3389/fchem.2022.992793
Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y M, Liu H F. Turning the page: Advancing detection platforms for sulfate reducing bacteria and their perks[J]. Chem. Rec., 2022,22e202100166.
Zhao A S, Zhang Z W, Zhang P H, Xiao S, Wang L, Dong Y, Yuan H, Li P W, Sun Y M, Jiang X L, Xiao F. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing[J]. Anal. Chim. Acta, 2016,938:63-71. doi: 10.1016/j.aca.2016.08.013
WANG Y Y, CHEN L M, LI S Y, LAI L H.. How intrinsically disordered proteins modulate biomolecular condensates[J]. Prog. Chem., 2022,34(7):1610-1618.
Sun Y M, Zheng H M, Wang C X, Yang M M, Zhou A J, Duan H W. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: Towards a flexible and versatile nanohybrid electrode[J]. Nanoscale., 2016,8(3):1523-1534. doi: 10.1039/C5NR06912B
Asif M, Ashraf G, Aziz A, Iftikhar T, Wang Z P, Xiao F, Sun Y M. Tuning the redox chemistry of copper oxide nanoarchitectures integrated with rGOP via facet engineering: Sensing H2S toward SRB detection[J]. ACS Appl. Mater. Interfaces, 2022,14(17):19480-19490. doi: 10.1021/acsami.2c02119
Ma X, Wu Y, She J, Zhao A S, Yang S X, Yang X, Xiao F, Sun Y M. On-chip electrochemical sensing of neurotransmitter in nerve cells by functionalized graphene fiber microelectrode[J]. Sens. Actuator B-Chem., 2022,365131874. doi: 10.1016/j.snb.2022.131874
Zhao A S, Lin T, Xu Y, Zhang W G, Asif M, Sun Y M, Xiao F. Integrated electrochemical microfluidic sensor with hierarchically porous nanoarrays modified graphene fiber microelectrode for bioassay[J]. Biosens. Bioelectron., 2022,205114095. doi: 10.1016/j.bios.2022.114095
Xu Y, Huang W, Zhang Y, Duan H W, Xiao F. Electrochemical microfluidic multiplexed bioanalysis by a highly active bottlebrush-like nanocarbon microelectrode[J]. Anal. Chem., 2022,94(10):4463-4473. doi: 10.1021/acs.analchem.1c05544
Manoj D, Aziz A, Muhammad N, Wang Z P, Xiao F, Asif M, Sun Y M. Integrating Co3O4 nanocubes on MXene anchored CFE for improved electrocatalytic activity: Freestanding flexible electrode for glucose sensing[J]. J. Environ. Chem. Eng., 2022,10(5)108433. doi: 10.1016/j.jece.2022.108433
FENG H D, ZHAO L, BAI Y F, FENG F.. The application of nanoscale metal-organic frameworks for tumor targeted therapy[J]. Prog. Chem., 2022,34(8):1863-1878.
Melamed J R, Edelstein R S, Day E S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy[J]. ACS Nano, 2015,9(1):6-11. doi: 10.1021/acsnano.5b00021
Lu Y, Zhang X G, Hou X Q, Feng M, Cao Z, Liu J. Functionalized 2D Nb2C nanosheets for primary and recurrent cancer photothermal/immune-therapy in the NIR-Ⅱ biowindow[J]. Nanoscale, 2021,13(42):17822-17836. doi: 10.1039/D1NR05126A
Hwang S, Nam J, Jung S, Song J, Doh H, Kim S. Gold nanoparticle-mediated photothermal therapy: Current status and future perspective[J]. Nanomedicine, 2014,9(13):2003-2022. doi: 10.2217/nnm.14.147
Hu J J, Cheng Y J, Zhang X Z. Recent advances in nanomaterials for enhanced photothermal therapy of tumors[J]. Nanoscale, 2018,10(48):22657-22672. doi: 10.1039/C8NR07627H
Xuan J N, Wang Z Q, Chen Y Y, Liang D J, Cheng L, Yang X J, Liu Z, Ma R, Sasaki T, Geng F X. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angew. Chem. Int. Ed., 2016,128(47):14789-14794. doi: 10.1002/ange.201606643
Liu G Y, Zou J H, Tang Q Y, Yang X Y, Zhang Y W, Zhang Q, Huang W, Chen P, Shao J J, Dong X C. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(46):40077-40086. doi: 10.1021/acsami.7b13421
Xing C Y, Chen S Y, Liang X, Liu Q, Qu M M, Zou Q S, Li J H, Tan H, Liu L P, Fan D Y, Zhang H. Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: Toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy Anticancer Activity[J]. ACS Appl. Mater. Interfaces, 2018,10(33):27631-27643. doi: 10.1021/acsami.8b08314
Zeng J, Goldfeld D, Xia Y. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch[J]. Angew. Chem., 2013,125(15):4263-4267. doi: 10.1002/ange.201210359
Hessel C. M, P Pattani V, Rasch M, Panthani M G, Koo B, Tunnell J W, Korgel B A[J]. Copper selenide nanocrystals for photothermal therapy. Nano Lett., 2011,11(6):2560-2566.
Han X X, Jing X X, Yang D Y, Lin H, Wang Z G, Ran H, Li P, Chen Y. Therapeuticmesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-Ⅱ biowindow[J]. Theranostics, 2018,8(16):4491-4508. doi: 10.7150/thno.26291
Cao Y, Wu T T, Zhang K, Meng X D, Dai W H, Wang D D, Dong H F, Zhang X J. Engineeredexosome-mediated near-infrared-Ⅱ Region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy[J]. ACS Nano, 2019,13(2):1499-1510.
Kong W H, Niu Y S, Liu M L, Zhang K X, Xu G F, Wang Y, Wang X W, Xu Y H, Li J H. One-step hydrothermal synthesis of fluorescent MXene-like titanium carbonitride quantum dots[J]. Inorg. Chem. Commun., 2019,105:151-157. doi: 10.1016/j.inoche.2019.04.033
Abubakar Sadique M, Yadav S, Ranjan P, Akram Khan M, Kumar A, Khan R. Rapid detection of SARS-CoV-2 using graphene-based IoT integrated advanced electrochemical biosensor[J]. Mater. Lett., 2021,305130824. doi: 10.1016/j.matlet.2021.130824
Ranjan P, Singhal A, Abubakar Sadique M, Yadav S, Parihar A, Khan R. Scope of biosensors, commercial aspects, and miniaturized devices for point-of-care testing from lab to clinics applications//Khan R, Parihar A, Sanghi S K. Biosensor Based Advanced Cancer Diagnostics: From lab to clinics[J]. Elsevier, 2022:395-410.
Parihar A, Singhal A, Kumar N, Khan R, Khan M A, Srivastava A K. Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics[J]. Nano-Micro Lett., 2022,14(1)100. doi: 10.1007/s40820-022-00845-1
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
APTES: (3-aminopropyl) triethoxysilane, HGNPs: hollow AuNPs, SPA: staphylococcal protein A, BSA: bovine serum albumin, Ab: antibody.