Citation: Mei-Han DONG, Feng LI, Yong-Juan XU, Yan-Chao DONG, Min-Hao LI, Chui-Long KONG, Xin-Yang CHEN, Jiu-Yan YANG, Jia-Yi SUN. Phosphorescent carbon dots powder: Synthesis and application in anti-background interference latent fingerprint imaging[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1527-1535. doi: 10.11862/CJIC.2023.098 shu

Phosphorescent carbon dots powder: Synthesis and application in anti-background interference latent fingerprint imaging

  • Corresponding author: Feng LI, syufengli@126.com
  • Received Date: 27 January 2023
    Revised Date: 18 May 2023

Figures(9)

  • In this work, fluorescent carbon dots (CDs) solution was prepared via a hydrothermal method with ethylenediamine, phosphoric acid, and boric acid as starting materials. Subsequently, the obtained solution was heated at 180 ℃ for 5 h to get phosphorescent CDs powder. The structure, morphology and size, surface groups and chemical compositions, and optical properties of as-prepared CDs were then characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible absorption spectroscopy, and photoluminescence spectra. The results showed the synthesized CDs were amorphous carbon structure, well-dispersed, and sphere-like in shape with a diameter of 3.78-7.64 nm. CDs were rich in heteroatom groups containing N, P, and B on the surface. Under 365 nm UV light irradiation, the CDs powder exhibited bright blue fluorescence, and green room-temperature phosphorescence (RTP) was observed for up to 10 s after switching off the 365 nm light irradiation. The as-obtained CDs powder as an efficient fingerprint reagent was successfully used for developing latent fingerprints (LFPs) on substrates with complex background patterns and strong background fluorescence. After turning off the 365 nm UV light, the clear whole fingerprint shapes with well-defined details can be observed. The background patterns and background fluorescence interference were efficiently eliminated by capturing the phosphorescent latent fingerprint images. Meanwhile, the developed 7-day-old LFPs on various substrates with strong background interference showed well-resolved green ridge flow phosphorescence fingerprint patterns.
  • 加载中
    1. [1]

      Chen H, Ma R L, Fan Z N, Chen Y, Wang Z Z, Fan L J. Fluorescence development of fingerprints by combining conjugated polymer nanoparticles with cyanoacrylate fuming[J]. J. Colloid Interface Sci., 2018,528:200-207. doi: 10.1016/j.jcis.2018.05.079

    2. [2]

      Li M J, Xu J Y, Zheng Q F, Guo C, Chen Y. Chemical-based surface plasmon resonance imaging of fingerprints[J]. Anal. Chem., 2022,94:7238-7245. doi: 10.1021/acs.analchem.2c00389

    3. [3]

      Yuan C J, Wang M, Li M, Sun P R, Gao R X, Tang J H. Construction, mechanism, and forensic application of green-light-excited fluorescent carbon dots/diatomite composites[J]. ACS Sustain. Chem. Eng., 2022,10:14294-14308. doi: 10.1021/acssuschemeng.2c04516

    4. [4]

      Ran C H, Xu Z Z, He J P, Man Z W, Lv Z, Wang P, Fu H B. Starch-based near-infrared organic fluorophores for the imaging of latent fingerprints[J]. J. Mater. Chem. C, 2022,10:16347-16352. doi: 10.1039/D2TC03532D

    5. [5]

      Dhiman S, Ahmad M, Kumar G, Luxami V, Singh P, Kumar S. Ratiometric chemosensor for differentiation of TNP from other NACs using distinct blue fluorescence and visualization of latent fingerprints[J]. J. Mater. Chem. C, 2021,9:1097-1106. doi: 10.1039/D0TC04795C

    6. [6]

      YUAN C J, WANG M, LI M, BAO J P, SUN P R, GAO R X. Application of luminescent materials based on carbon dots in development of latent fingerprints[J]. Prog. Chem., 2022,34(9):2108-2120.  

    7. [7]

      Wang J, Wei T, Li X Y, Zhang B H, Wang J X, Huang C, Yuan Q. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition[J]. Angew. Chem. Int. Ed., 2014,53:1616-1620. doi: 10.1002/anie.201308843

    8. [8]

      ZHAO Z J, HOU M X, WANG K N, LIU L Y, MAO Z W. Mitochondria-targeted iridium(Ⅲ) complex used as a two-photon phosphorescent probe for SO2 derivatives detection in vitro and in vivo[J]. Chinese J. Inorg. Chem., 2020,36(6):1113-1122.  

    9. [9]

      LIAO Z X, WANG Y H, ZHENG J P. The research advance of carbon-dots based hydrophilic room temperature phosphorescent composites[J]. Prog. Chem., 2023,35(2):263-273.  

    10. [10]

      Wei S Q, Li H Y, Yin X H, Yang Q, Chen A L, Li R J, Wang J, Yang R. Revealing graphitic nitrogen participating in p-p conjugated domain as emissive center of red carbon dots and applied to red room-temperature phosphorescence[J]. New J. Chem., 2021,45:22335-22343. doi: 10.1039/D1NJ04727B

    11. [11]

      Wang W H, Mei R L, Zhao Q X, Liu C, Chen H Y, Su S C, Wang S P. Activated triplet exciton release for highly efficient room-temperature phosphorescence based on S, N-doped polymeric carbon nitride[J]. J. Phys. Chem. Lett., 2022,13:726-732. doi: 10.1021/acs.jpclett.1c03688

    12. [12]

      He W, Sun X Y, Cao X G. Construction and multifunctional applications of visible-light-excited multicolor long afterglow carbon dots/boron oxide composites[J]. ACS Sustain. Chem. Eng., 2021,9:4477-4486. doi: 10.1021/acssuschemeng.0c08652

    13. [13]

      Liu P, Liu C, Chen J C, Wang B. Facile synthesis of matrix-free room-temperature phosphorescent nitrogen-doped carbon dots and their application as security inks[J]. Macromol. Mater. Eng., 2021,3062100339. doi: 10.1002/mame.202100339

    14. [14]

      Liu Y, Zheng C Y, Yang B. Phosphorus and nitrogen codoped carbonized polymer dots with multicolor room temperature phosphorescence for anticounterfeiting painting[J]. Langmuir, 2022,38:8304-8311. doi: 10.1021/acs.langmuir.2c00738

    15. [15]

      Chao T Y, Wang J J, Dong X Z, Ren J K, Zhang H L, Song R, Xie Z. Defects and structural limitation-induced carbon dots-silica hybrid materials with ultralong room temperature phosphorescence[J]. J. Phys. Chem. Lett., 2022,13:9558-9563. doi: 10.1021/acs.jpclett.2c02647

    16. [16]

      Xia C L, Zhu S J, Zhang S T, Zeng Q S, Tao S Y, Tian X Z, Li Y F, Yang B. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength[J]. ACS Appl. Mater. Interfaces, 2020,12:38593-38601. doi: 10.1021/acsami.0c11867

    17. [17]

      Wei X Y, Yang J W, Hu L L, Cao Y, Lai J, Cao F F, Gu J J, Cao X F. Recent advances in room temperature phosphorescent carbon dots: Preparation, mechanism, and applications[J]. J. Mater. Chem. C, 2021,9:4425-4443. doi: 10.1039/D0TC06031C

    18. [18]

      Wang Z F, Shen J, Xu B, Jiang Q L, Ming S L, Yan L T, Gao Z H, Wang X, Zhu C F, Meng X G. Thermally driven amorphous-crystalline phase transition of carbonized polymer dots for multicolor room-temperature phosphorescence[J]. Adv. Opt. Mater., 2021,9(16)2100421. doi: 10.1002/adom.202100421

    19. [19]

      Tao S Y, Zhou C J, Kang C Y, Zhu S J, Feng T L, Zhang S T, Ding Z Y, Zheng C Y, Xia C L, Yang B. Confined-domain crosslink-enhanced emission effect in carbonized polymer dots[J]. Light: Sci. Appl., 2022,1156. doi: 10.1038/s41377-022-00745-4

    20. [20]

      Annamalai A, Annamalai K, Ravichandran R, Bharathkumar S, Elumalai S. Multi-functional carbon dots from simple precursors: An excellent heavy metal ions sensor with photocatalytic activity in aqueous environment[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2022,652129800. doi: 10.1016/j.colsurfa.2022.129800

    21. [21]

      Shen J, Xu B, Chen S W, Jia Y H, Li J, Jiang T L, Gao Z H, Wang X, Zhu C F, Shi H, Wang Z F. Exceeding 67.35% Efficient and color temperature tunable white light from carbon dots with quadruple-channel fluorescence-phosphorescence emission[J]. ACS Sustain. Chem. Eng., 2022,10:15599-15607.

    22. [22]

      Shi H X, Niu Z J, Wang H, Ye W P, Xi K, Huang X, Wang H L, Liu Y F, Lin H W, Shi H F, An Z F. Endowing matrix-free carbon dots with color tunable ultralong phosphorescence by self-doping[J]. Chem. Sci., 2022,13:4406-4412. doi: 10.1039/D2SC01167K

    23. [23]

      Shen J, Xu B, Wang Z F, Zhang J, Zhang W G, Gao Z H, Wang X, Zhu C F, Meng X G. Aggregation-induced room temperature phosphorescent carbonized polymer dots with wide-range tunable lifetimes for optical multiplexing[J]. J. Mater. Chem. C, 2021,9:6781-6788. doi: 10.1039/D1TC01057C

    24. [24]

      Li T F, Wu C G, Yang M S, Li B W, Yan X R, Zhu X R, Yu H P, Hu M J, Yang J. Long-lived color-tunable room-temperature phosphorescence of boron-doped carbon dots[J]. Langmuir, 2022,38:2287-2293. doi: 10.1021/acs.langmuir.1c02973

    25. [25]

      Jiang K, Wang Y H, Gao X L, Cai C Z, Lin H W. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation[J]. Angew. Chem. Int. Ed., 2018,57:1-6.

    26. [26]

      Ding Z Z, Shen C L, Han J F, Zheng G S, Ni Q C, Song R W, Liu K K, Zang J H, Dong L, Lou Q, Shan C X. In situ confining citric acid-derived carbon dots for full-color room-temperature phosphorescence[J]. Small, 20222205916.

  • 加载中
    1. [1]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    2. [2]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    3. [3]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    4. [4]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    5. [5]

      Ting LiXiao ZengYuzhuo YangXinyi WenShurong DingLinlin ShiYongqiang ZhangSiyu Lu . Towards practical circularly polarized luminescence: carbon dots-based circularly polarized lasers. Acta Physico-Chimica Sinica, 2026, 42(4): 100191-0. doi: 10.1016/j.actphy.2025.100191

    6. [6]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    7. [7]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    8. [8]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    9. [9]

      Yinghao ZhangHuaxin LiuHanrui DingZhi ZhengWentao DengGuoqiang ZouLaiqiang XuHongshuai HouXiaobo Ji . The application of carbon dots in electrolytes of advanced batteries. Acta Physico-Chimica Sinica, 2026, 42(3): 100170-0. doi: 10.1016/j.actphy.2025.100170

    10. [10]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    11. [11]

      Yan LongWenbo ZhaoQing CaoXiangyu LiFukui LiYanwei HuShiyu SongKaikai Liu . Phosphorescent carbon nanodot inks for scalable and high-resolution invisible printing. Acta Physico-Chimica Sinica, 2026, 42(3): 100198-0. doi: 10.1016/j.actphy.2025.100198

    12. [12]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    13. [13]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    14. [14]

      Qi WANGYing CHENGYuyan WANGYibing XIAOHaozhe LUYansong ZHANGShengling LIJiazi TANTAINa SUNLifeng DINGJinqin GUOPeng JIN . "Shining dot" in vinegar—Extraction of carbon quantum dots and the fluorescence properties analysis. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 87-96. doi: 10.11862/CJIC.20250127

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    17. [17]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    18. [18]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    19. [19]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    20. [20]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

Metrics
  • PDF Downloads(10)
  • Abstract views(4844)
  • HTML views(364)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return