Citation: Mei-Han DONG, Feng LI, Yong-Juan XU, Yan-Chao DONG, Min-Hao LI, Chui-Long KONG, Xin-Yang CHEN, Jiu-Yan YANG, Jia-Yi SUN. Phosphorescent carbon dots powder: Synthesis and application in anti-background interference latent fingerprint imaging[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1527-1535. doi: 10.11862/CJIC.2023.098 shu

Phosphorescent carbon dots powder: Synthesis and application in anti-background interference latent fingerprint imaging

  • Corresponding author: Feng LI, syufengli@126.com
  • Received Date: 27 January 2023
    Revised Date: 18 May 2023

Figures(9)

  • In this work, fluorescent carbon dots (CDs) solution was prepared via a hydrothermal method with ethylenediamine, phosphoric acid, and boric acid as starting materials. Subsequently, the obtained solution was heated at 180 ℃ for 5 h to get phosphorescent CDs powder. The structure, morphology and size, surface groups and chemical compositions, and optical properties of as-prepared CDs were then characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible absorption spectroscopy, and photoluminescence spectra. The results showed the synthesized CDs were amorphous carbon structure, well-dispersed, and sphere-like in shape with a diameter of 3.78-7.64 nm. CDs were rich in heteroatom groups containing N, P, and B on the surface. Under 365 nm UV light irradiation, the CDs powder exhibited bright blue fluorescence, and green room-temperature phosphorescence (RTP) was observed for up to 10 s after switching off the 365 nm light irradiation. The as-obtained CDs powder as an efficient fingerprint reagent was successfully used for developing latent fingerprints (LFPs) on substrates with complex background patterns and strong background fluorescence. After turning off the 365 nm UV light, the clear whole fingerprint shapes with well-defined details can be observed. The background patterns and background fluorescence interference were efficiently eliminated by capturing the phosphorescent latent fingerprint images. Meanwhile, the developed 7-day-old LFPs on various substrates with strong background interference showed well-resolved green ridge flow phosphorescence fingerprint patterns.
  • 加载中
    1. [1]

      Chen H, Ma R L, Fan Z N, Chen Y, Wang Z Z, Fan L J. Fluorescence development of fingerprints by combining conjugated polymer nanoparticles with cyanoacrylate fuming[J]. J. Colloid Interface Sci., 2018,528:200-207. doi: 10.1016/j.jcis.2018.05.079

    2. [2]

      Li M J, Xu J Y, Zheng Q F, Guo C, Chen Y. Chemical-based surface plasmon resonance imaging of fingerprints[J]. Anal. Chem., 2022,94:7238-7245. doi: 10.1021/acs.analchem.2c00389

    3. [3]

      Yuan C J, Wang M, Li M, Sun P R, Gao R X, Tang J H. Construction, mechanism, and forensic application of green-light-excited fluorescent carbon dots/diatomite composites[J]. ACS Sustain. Chem. Eng., 2022,10:14294-14308. doi: 10.1021/acssuschemeng.2c04516

    4. [4]

      Ran C H, Xu Z Z, He J P, Man Z W, Lv Z, Wang P, Fu H B. Starch-based near-infrared organic fluorophores for the imaging of latent fingerprints[J]. J. Mater. Chem. C, 2022,10:16347-16352. doi: 10.1039/D2TC03532D

    5. [5]

      Dhiman S, Ahmad M, Kumar G, Luxami V, Singh P, Kumar S. Ratiometric chemosensor for differentiation of TNP from other NACs using distinct blue fluorescence and visualization of latent fingerprints[J]. J. Mater. Chem. C, 2021,9:1097-1106. doi: 10.1039/D0TC04795C

    6. [6]

      YUAN C J, WANG M, LI M, BAO J P, SUN P R, GAO R X. Application of luminescent materials based on carbon dots in development of latent fingerprints[J]. Prog. Chem., 2022,34(9):2108-2120.  

    7. [7]

      Wang J, Wei T, Li X Y, Zhang B H, Wang J X, Huang C, Yuan Q. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition[J]. Angew. Chem. Int. Ed., 2014,53:1616-1620. doi: 10.1002/anie.201308843

    8. [8]

      ZHAO Z J, HOU M X, WANG K N, LIU L Y, MAO Z W. Mitochondria-targeted iridium(Ⅲ) complex used as a two-photon phosphorescent probe for SO2 derivatives detection in vitro and in vivo[J]. Chinese J. Inorg. Chem., 2020,36(6):1113-1122.  

    9. [9]

      LIAO Z X, WANG Y H, ZHENG J P. The research advance of carbon-dots based hydrophilic room temperature phosphorescent composites[J]. Prog. Chem., 2023,35(2):263-273.  

    10. [10]

      Wei S Q, Li H Y, Yin X H, Yang Q, Chen A L, Li R J, Wang J, Yang R. Revealing graphitic nitrogen participating in p-p conjugated domain as emissive center of red carbon dots and applied to red room-temperature phosphorescence[J]. New J. Chem., 2021,45:22335-22343. doi: 10.1039/D1NJ04727B

    11. [11]

      Wang W H, Mei R L, Zhao Q X, Liu C, Chen H Y, Su S C, Wang S P. Activated triplet exciton release for highly efficient room-temperature phosphorescence based on S, N-doped polymeric carbon nitride[J]. J. Phys. Chem. Lett., 2022,13:726-732. doi: 10.1021/acs.jpclett.1c03688

    12. [12]

      He W, Sun X Y, Cao X G. Construction and multifunctional applications of visible-light-excited multicolor long afterglow carbon dots/boron oxide composites[J]. ACS Sustain. Chem. Eng., 2021,9:4477-4486. doi: 10.1021/acssuschemeng.0c08652

    13. [13]

      Liu P, Liu C, Chen J C, Wang B. Facile synthesis of matrix-free room-temperature phosphorescent nitrogen-doped carbon dots and their application as security inks[J]. Macromol. Mater. Eng., 2021,3062100339. doi: 10.1002/mame.202100339

    14. [14]

      Liu Y, Zheng C Y, Yang B. Phosphorus and nitrogen codoped carbonized polymer dots with multicolor room temperature phosphorescence for anticounterfeiting painting[J]. Langmuir, 2022,38:8304-8311. doi: 10.1021/acs.langmuir.2c00738

    15. [15]

      Chao T Y, Wang J J, Dong X Z, Ren J K, Zhang H L, Song R, Xie Z. Defects and structural limitation-induced carbon dots-silica hybrid materials with ultralong room temperature phosphorescence[J]. J. Phys. Chem. Lett., 2022,13:9558-9563. doi: 10.1021/acs.jpclett.2c02647

    16. [16]

      Xia C L, Zhu S J, Zhang S T, Zeng Q S, Tao S Y, Tian X Z, Li Y F, Yang B. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength[J]. ACS Appl. Mater. Interfaces, 2020,12:38593-38601. doi: 10.1021/acsami.0c11867

    17. [17]

      Wei X Y, Yang J W, Hu L L, Cao Y, Lai J, Cao F F, Gu J J, Cao X F. Recent advances in room temperature phosphorescent carbon dots: Preparation, mechanism, and applications[J]. J. Mater. Chem. C, 2021,9:4425-4443. doi: 10.1039/D0TC06031C

    18. [18]

      Wang Z F, Shen J, Xu B, Jiang Q L, Ming S L, Yan L T, Gao Z H, Wang X, Zhu C F, Meng X G. Thermally driven amorphous-crystalline phase transition of carbonized polymer dots for multicolor room-temperature phosphorescence[J]. Adv. Opt. Mater., 2021,9(16)2100421. doi: 10.1002/adom.202100421

    19. [19]

      Tao S Y, Zhou C J, Kang C Y, Zhu S J, Feng T L, Zhang S T, Ding Z Y, Zheng C Y, Xia C L, Yang B. Confined-domain crosslink-enhanced emission effect in carbonized polymer dots[J]. Light: Sci. Appl., 2022,1156. doi: 10.1038/s41377-022-00745-4

    20. [20]

      Annamalai A, Annamalai K, Ravichandran R, Bharathkumar S, Elumalai S. Multi-functional carbon dots from simple precursors: An excellent heavy metal ions sensor with photocatalytic activity in aqueous environment[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2022,652129800. doi: 10.1016/j.colsurfa.2022.129800

    21. [21]

      Shen J, Xu B, Chen S W, Jia Y H, Li J, Jiang T L, Gao Z H, Wang X, Zhu C F, Shi H, Wang Z F. Exceeding 67.35% Efficient and color temperature tunable white light from carbon dots with quadruple-channel fluorescence-phosphorescence emission[J]. ACS Sustain. Chem. Eng., 2022,10:15599-15607.

    22. [22]

      Shi H X, Niu Z J, Wang H, Ye W P, Xi K, Huang X, Wang H L, Liu Y F, Lin H W, Shi H F, An Z F. Endowing matrix-free carbon dots with color tunable ultralong phosphorescence by self-doping[J]. Chem. Sci., 2022,13:4406-4412. doi: 10.1039/D2SC01167K

    23. [23]

      Shen J, Xu B, Wang Z F, Zhang J, Zhang W G, Gao Z H, Wang X, Zhu C F, Meng X G. Aggregation-induced room temperature phosphorescent carbonized polymer dots with wide-range tunable lifetimes for optical multiplexing[J]. J. Mater. Chem. C, 2021,9:6781-6788. doi: 10.1039/D1TC01057C

    24. [24]

      Li T F, Wu C G, Yang M S, Li B W, Yan X R, Zhu X R, Yu H P, Hu M J, Yang J. Long-lived color-tunable room-temperature phosphorescence of boron-doped carbon dots[J]. Langmuir, 2022,38:2287-2293. doi: 10.1021/acs.langmuir.1c02973

    25. [25]

      Jiang K, Wang Y H, Gao X L, Cai C Z, Lin H W. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation[J]. Angew. Chem. Int. Ed., 2018,57:1-6.

    26. [26]

      Ding Z Z, Shen C L, Han J F, Zheng G S, Ni Q C, Song R W, Liu K K, Zang J H, Dong L, Lou Q, Shan C X. In situ confining citric acid-derived carbon dots for full-color room-temperature phosphorescence[J]. Small, 20222205916.

  • 加载中
    1. [1]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    5. [5]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    6. [6]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    7. [7]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    8. [8]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    9. [9]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    10. [10]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    11. [11]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    12. [12]

      Hongyan Feng Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087

    13. [13]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    18. [18]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    19. [19]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    20. [20]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

Metrics
  • PDF Downloads(5)
  • Abstract views(2380)
  • HTML views(241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return