Citation: Hang-Yang LI, Ling ZHOU, Bo-Ming HAN, Xiang-Yang GU, Qing-Lan YE, Xue-Tang XU, Fan WANG, Bin LI. Hydrogen evolution performance of CoFeOx/MoO2 quasi-parallel nanoarray electrode[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1275-1286. doi: 10.11862/CJIC.2023.097 shu

Hydrogen evolution performance of CoFeOx/MoO2 quasi-parallel nanoarray electrode

  • Corresponding author: Qing-Lan YE, yeql@gxu.edu.cn
  • Received Date: 18 December 2022
    Revised Date: 17 May 2023

Figures(7)

  • Herein, a quasi-parallel CoFe layer double hydroxide (CoFe LDH) nanosheet array was employed as precursor to regulate the deposition of MoO2 nanoparticles with abundant oxygen vacancies array by in-situ loading and calcination process. The as-obtained CoFeOx/MoO2 nanoarray electrode showed the enhanced hydrogen evolution reaction (HER) activity, while it delivered the current densities of 10 and 1 000 mA·cm-2 at overpotential of 40 and 217 mV, respectively. Besides, the current density of 50 mA·cm-2 for CoFeOx/MoO2 electrode was maintained at an overpotential of 100 mV up to 125 h of operation.
  • 加载中
    1. [1]

      Chen W F, Sasaki K, Ma C, Frenkel A, Marinkovic N, Muckerman J T, Zhu Y M, Adzic R R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets[J]. Angew. Chem. Int. Ed., 2012,51(25):6131-6135. doi: 10.1002/anie.201200699

    2. [2]

      Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2017,317(5834):100-102.

    3. [3]

      He C, Tao J. Exploration of the electrochemical mechanism of ultrasmall multiple phases molybdenum carbides nanocrystals for hydrogen evolution reaction[J]. RSC Adv., 2016,6(11):9240-9246. doi: 10.1039/C5RA25367E

    4. [4]

      Wang D Z, Zhang D Z, Tang C Y, Zhou P, Wu Z Z. Hydrogen evolution catalyzed by cobalt-promoted molybdenum phosphide nanoparticles[J]. Catal. Sci. Technol., 2016,6(6):1952-1956. doi: 10.1039/C5CY01457C

    5. [5]

      Jiang P, Yang Y, Shi R H, Xia G L, Chen J T, Su J W, Chen Q W. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2017,5(11):5475-5485. doi: 10.1039/C6TA09994G

    6. [6]

      Zhuang R Y, Yao S S, Shen X Q, Li T B. Hydrothermal synthesis of mesoporous MoO2 nanospheres as sulfur matrix for lithium sulfur battery[J]. J. Electroanal. Chem., 2019,833:441-448. doi: 10.1016/j.jelechem.2018.12.009

    7. [7]

      Rui W, Zhang J F, Shi Y M, Liu D L, Zhang B. Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2015,137(22):6983-6986. doi: 10.1021/jacs.5b01330

    8. [8]

      Jin Y, Shen P K. Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for hydrogen evolution reaction[J]. J. Mater. Chem. A, 2015,3(40):20080-20085. doi: 10.1039/C5TA06018D

    9. [9]

      Zhang Z Q, Lin X F, Tang S L. Self-supported system of MoO2@Ni2P heterostructures as an efficient electrocatalyst for hydrogen evolution reactions in alkaline media[J]. J. Colloid Interface Sci., 2023,630:494-501. doi: 10.1016/j.jcis.2022.10.041

    10. [10]

      ZHOU Q, LUO Y C. Three dimensional Ni(OH)2/Ni@N-doped reduced graphene oxide composite electrodes as an electrocatalyst for hydrogen evolution reaction[J]. Chinese J. Inorg. Chem., 2022,38(8):1541-1548.  

    11. [11]

      Liu Z, Jiang D, Yang L J, Yu J, Liu H, Li X, Liu X Y, Zhao L L, Zhang X L, Han F, Zhou W J, Liu H. Plasmon-enhanced hydrogen eevolution reaction kinetics through the strong coupling of Au-O bond on Au-MoO2 heterostructure nanosheets[J]. Nano Energy, 2021,88106302. doi: 10.1016/j.nanoen.2021.106302

    12. [12]

      Mu X Q, Gu X Y, Dai S P, Chen J B, Cui Y J, Chen Q, Yu M, Chen C Y, Liu S L, Mu S C. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting[J]. Energy Environ. Sci., 2022,15:4048-4057. doi: 10.1039/D2EE01337A

    13. [13]

      Zhang W Z Z, Ding L C, Sun W P, Sheng T, Wu Z C, Gao F. Ultrasmall Pt nanoparticles-loaded crystalline MoO2/amorphous Ni(OH)2 hybrid nanofilms with enhanced water dissociation and sufficient hydrogen spillover for hydrogen generation[J]. ACS Sustain. Chem. Eng., 2021,9(24):8257-8269. doi: 10.1021/acssuschemeng.1c02421

    14. [14]

      Qiu Y, Liu S Q, Wei C, Fan J X, Yao H, Dai L X, Wang G M, Li H, Su B L, Guo X H. Synergistic effect between platinum single atoms and oxygen vacancy in MoO2 boosting pH-universal hydrogen evolution reaction at large current density[J]. Chem. Eng. J., 2022,427131309. doi: 10.1016/j.cej.2021.131309

    15. [15]

      Guo Y H, Liu X L, Zang Y M, Wu Y Q, Zhang Q Q, Wang Z Y, Liu Y Y, Zheng Z K, Cheng H F, Huang B B. Constructing a bifunctional MoO2/Co heterojunction for efficient electrocatalytic hydrogen evolution and hydrazine oxidation[J]. J. Mater. Chem. A, 2022,10:17297-17306. doi: 10.1039/D2TA03659B

    16. [16]

      Ren J T, Wu X M, Liu T, Chen L, Hao R, Song Y J, Liu Y P, Yuan Z Y. Interfacing nickel with molybdenum oxides as monolithic catalyst to accelerate alkaline hydrogen electrocatalysis with robust stability[J]. Appl. Catal. B-Environ., 2022,317121786. doi: 10.1016/j.apcatb.2022.121786

    17. [17]

      Ni S, Qu H N, Xing H F, Xu Z H, Zhu X Y, Yuan M L, Wang L, Yu J M, Li Y Q, Yang L R, Liu H Z. Donor-acceptor couples of metal and metal oxides with enriched Ni3+ active sites for oxygen evolution[J]. ACS Appl. Mater. Interfaces, 2021,13(15):17501-17510. doi: 10.1021/acsami.1c00890

    18. [18]

      Cai J, Ding J, Wei D, Xie X, Li B, Lu S, Zhang J, Liu Y, Cai Q, Zang S. Coupling of Ru and O-vacancy on 2D Mo-based electrocatalyst via a solid-phase interface reaction strategy for hydrogen evolution reaction[J]. Adv. Energy Mater., 2021,112100141. doi: 10.1002/aenm.202100141

    19. [19]

      YANG C, ZHAO X Y, ZHANG Z L. Preparation and electrochemical performance of porous carbon/selenium composite free-standing electrode[J]. Chinese J. Inorg. Chem., 2021,37(11):1922-1930. doi: 10.11862/CJIC.2021.242

    20. [20]

      ZHAO Y, PENG M, TAN Y W. Research progress on three dimensional self-supporting electrodes in hydrogen evolution reaction[J]. Materials China, 2018,37(4):241-253.  

    21. [21]

      Ye Q L, Li J, Liu X Y, Xu X T, Wang F, Li B. Surface pattern of NiCo hydroxide nanoplate arrays electrocatalysts for the oxygen evolution reaction[J]. J. Power Sources, 2019,412:10-17. doi: 10.1016/j.jpowsour.2018.10.075

    22. [22]

      Wang Z L, Mao X, Chen P, Xiao M, Monny S A, Wang S C, Konarova M, Du A J, Wang L Z. Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes[J]. Angew. Chem. Int. Ed., 2019,58(4):1030-1034. doi: 10.1002/anie.201810583

    23. [23]

      Yu F, Zhou H Q, Huang Y F, Sun J Y, Qin F, Bao J M, Goddard Ⅲ W A, Chen S, Ren Z F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting[J]. Nat. Commun., 2018,9(1)2551. doi: 10.1038/s41467-018-04746-z

    24. [24]

      Chen W S, Gu J J, Du Y P, Song F, Bu F X, Li J H, Yuan Y, Luo R C, Liu Q L, Zhang D. Achieving rich and active alkaline hydrogen evolution heterostructures via interface engineering on 2D 1T-MoS2 quantum sheets[J]. Adv. Funct. Mater., 2020,30(25)2000551. doi: 10.1002/adfm.202000551

    25. [25]

      Ma L B, Hu Y, Chen R P, Zhu G Y, Chen T, Lv H L, Wang Y R, Liang J, Liu H X, Yan C Z, Zhu H F, Tie Z X, Jin Z, Liu J. Self- assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution[J]. Nano Energy, 2016,24:139-147. doi: 10.1016/j.nanoen.2016.04.024

    26. [26]

      Bao J, Zhang X D, Fan B, Zhang J J, Zhou M, Yang W L, Hu X, Wang H, Pan B C, Xie Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation[J]. Angew. Chem. Int. Ed., 2015,54(25):7399-7404. doi: 10.1002/anie.201502226

    27. [27]

      Moon S H, Kim M J, Im S H. Synthesis of lustering two-dimensional α-MoO3 van der Waals crystals by TiO2 assisted selective facet passivation[J]. J. Ind. Eng. Chem., 2020,84:358-365. doi: 10.1016/j.jiec.2020.01.019

    28. [28]

      Ye Q L, Li L F, Li H Y, Gu X Y, Han B M, Xu X T, Wang F, Li B. Quasi-parallel NiFe layered double hydroxide nanosheet arrays for large-current-density oxygen evolution electrocatalysis[J]. ChemSusChem, 2022,152101873.

    29. [29]

      Razavi M, Sookhakian M, Goh B T, Bahron H, Mahmoud E Y, Alias Y. Molybdenum disulfide nanosheets decorated with platinum nanoparticle as a high active electrocatalyst in hydrogen evolution reaction[J]. Nanoscale Res. Lett., 2022,179. doi: 10.1186/s11671-021-03644-6

    30. [30]

      Krstajić N, Popović M, Grgur B, Vojnović M, Sepa D. On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution-Part Ⅰ. The mechanism[J]. J. Electroanal. Chem., 2001,512(1):16-26.

    31. [31]

      Alobaid A, Wang C S, Adomaitis R A. Mechanism and kinetics of HER and OER on NiFe LDH films in an alkaline electrolyte[J]. J. Electroanal. Chem., 2018,165(15):3395-3404. doi: 10.1149/2.0481815jes

    32. [32]

      Wu Q K, Luo Y T, Xie R K, Nong H Y, Cai Z Y, Tang L, Tan J Y, Feng S M, Zhao S L, Yu Q M, Lin J H, Chai G L, Liu B L. Space- confined one-step growth of 2D MoO2/MoS2 vertical heterostructures for superior hydrogen evolution in alkaline electrolytes[J]. Small, 2022,182201051. doi: 10.1002/smll.202201051

    33. [33]

      Zhang Z Q, Lin X F, Tang S L, Xie H J, Huang Q T. Self-supported system of MoO2@Ni2P heterostructures as an efficient electrocatalyst for hydrogen evolution reactions in alkaline media[J]. J. Colloid Interface Sci., 2023,630:494-501. doi: 10.1016/j.jcis.2022.10.041

    34. [34]

      Yu F, Zhou H Q, Huang Y F, Sun J Y, Qin F, Bao J M, Goddardiii W A, Chen S, Ren Z F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting[J]. Nat. Commun., 2018,9(1)2551. doi: 10.1038/s41467-018-04746-z

    35. [35]

      Chen W S, Gu J J, Du Y P, Song F, Bu F X, Li J H, Yuan Y, Luo R C, Liu Q L, Zhang D. Achieving rich and active alkaline hydrogen evolution heterostructures via interface engineering on 2D 1T-MoS2 quantum sheets[J]. Adv. Funct. Mater., 2020,30(25)2000551. doi: 10.1002/adfm.202000551

    36. [36]

      Yu L, Mishra I K, Xie Y L, Zhou H Q, Sun J Y, Zhou J Q, Ni Y Z, Luo D, Yu F, Yu Y, Chen S, Ren Z F. Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density[J]. Nano Energy, 2018,53:492-500. doi: 10.1016/j.nanoen.2018.08.025

    37. [37]

      Xue S, Liu Z B, Ma C Q, Cheng H M, Ren W C. A highly active and durable electrocatalyst for large current density hydrogen evolution reaction[J]. Sci. Bull., 2019,65(2):123-130.

    38. [38]

      Yu C, Xu F, Luo L, Abbo H S, Titinchi S J J, Shen P K, Tsiakaras P, Yin S B. Bimetallic Ni-Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction[J]. Electrochim. Acta, 2019,317:191-198. doi: 10.1016/j.electacta.2019.05.150

    39. [39]

      Qian G F, Yu G T, Lu J J, Luo L, Wang T, Zhang C H, Ku R Q, Yin S B, Chen W, Mu S C. Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density[J]. J. Mater. Chem. A, 2020,8(29):14545-14554. doi: 10.1039/D0TA04388E

    40. [40]

      Liu S L, Chen C, Zhang Y F, Zheng Q H, Zhang S D, Mu X Q, Chen C Y, Ma J M, Mu S C. Vacancy-coordinated hydrogen evolution reaction on MoO3-x anchored atomically dispersed MoRu pairs[J]. J. Mater. Chem. A, 2019,7(24):14466-14472. doi: 10.1039/C9TA03719E

    41. [41]

      Wang Y M, Qian G F, Xu Q L, Zhang H, Shen F, Luo L, Yin S B. Industrially promising IrNi-FeNi3 hybrid nanosheets for overall water splitting catalysis at large current density[J]. Appl. Catal. B- Environ., 2021,286119881. doi: 10.1016/j.apcatb.2021.119881

    42. [42]

      Yang D, Cao L Y, Feng L L, Huang J F, Feng Y Q, Liu Q Q, He D Y, Wang J. Controlled synthesis of V-doped heterogeneous Ni3S2/NiS nanorod arrays as efficient hydrogen evolution electrocatalysts[J]. Langmuir, 2020,37(1):357-365.

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(4)
  • Abstract views(1144)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return