Hydrogen evolution performance of CoFeOx/MoO2 quasi-parallel nanoarray electrode
- Corresponding author: Qing-Lan YE, yeql@gxu.edu.cn
Citation: Hang-Yang LI, Ling ZHOU, Bo-Ming HAN, Xiang-Yang GU, Qing-Lan YE, Xue-Tang XU, Fan WANG, Bin LI. Hydrogen evolution performance of CoFeOx/MoO2 quasi-parallel nanoarray electrode[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1275-1286. doi: 10.11862/CJIC.2023.097
Chen W F, Sasaki K, Ma C, Frenkel A, Marinkovic N, Muckerman J T, Zhu Y M, Adzic R R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets[J]. Angew. Chem. Int. Ed., 2012,51(25):6131-6135. doi: 10.1002/anie.201200699
Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2017,317(5834):100-102.
He C, Tao J. Exploration of the electrochemical mechanism of ultrasmall multiple phases molybdenum carbides nanocrystals for hydrogen evolution reaction[J]. RSC Adv., 2016,6(11):9240-9246. doi: 10.1039/C5RA25367E
Wang D Z, Zhang D Z, Tang C Y, Zhou P, Wu Z Z. Hydrogen evolution catalyzed by cobalt-promoted molybdenum phosphide nanoparticles[J]. Catal. Sci. Technol., 2016,6(6):1952-1956. doi: 10.1039/C5CY01457C
Jiang P, Yang Y, Shi R H, Xia G L, Chen J T, Su J W, Chen Q W. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2017,5(11):5475-5485. doi: 10.1039/C6TA09994G
Zhuang R Y, Yao S S, Shen X Q, Li T B. Hydrothermal synthesis of mesoporous MoO2 nanospheres as sulfur matrix for lithium sulfur battery[J]. J. Electroanal. Chem., 2019,833:441-448. doi: 10.1016/j.jelechem.2018.12.009
Rui W, Zhang J F, Shi Y M, Liu D L, Zhang B. Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2015,137(22):6983-6986. doi: 10.1021/jacs.5b01330
Jin Y, Shen P K. Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for hydrogen evolution reaction[J]. J. Mater. Chem. A, 2015,3(40):20080-20085. doi: 10.1039/C5TA06018D
Zhang Z Q, Lin X F, Tang S L. Self-supported system of MoO2@Ni2P heterostructures as an efficient electrocatalyst for hydrogen evolution reactions in alkaline media[J]. J. Colloid Interface Sci., 2023,630:494-501. doi: 10.1016/j.jcis.2022.10.041
ZHOU Q, LUO Y C. Three dimensional Ni(OH)2/Ni@N-doped reduced graphene oxide composite electrodes as an electrocatalyst for hydrogen evolution reaction[J]. Chinese J. Inorg. Chem., 2022,38(8):1541-1548.
Liu Z, Jiang D, Yang L J, Yu J, Liu H, Li X, Liu X Y, Zhao L L, Zhang X L, Han F, Zhou W J, Liu H. Plasmon-enhanced hydrogen eevolution reaction kinetics through the strong coupling of Au-O bond on Au-MoO2 heterostructure nanosheets[J]. Nano Energy, 2021,88106302. doi: 10.1016/j.nanoen.2021.106302
Mu X Q, Gu X Y, Dai S P, Chen J B, Cui Y J, Chen Q, Yu M, Chen C Y, Liu S L, Mu S C. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting[J]. Energy Environ. Sci., 2022,15:4048-4057. doi: 10.1039/D2EE01337A
Zhang W Z Z, Ding L C, Sun W P, Sheng T, Wu Z C, Gao F. Ultrasmall Pt nanoparticles-loaded crystalline MoO2/amorphous Ni(OH)2 hybrid nanofilms with enhanced water dissociation and sufficient hydrogen spillover for hydrogen generation[J]. ACS Sustain. Chem. Eng., 2021,9(24):8257-8269. doi: 10.1021/acssuschemeng.1c02421
Qiu Y, Liu S Q, Wei C, Fan J X, Yao H, Dai L X, Wang G M, Li H, Su B L, Guo X H. Synergistic effect between platinum single atoms and oxygen vacancy in MoO2 boosting pH-universal hydrogen evolution reaction at large current density[J]. Chem. Eng. J., 2022,427131309. doi: 10.1016/j.cej.2021.131309
Guo Y H, Liu X L, Zang Y M, Wu Y Q, Zhang Q Q, Wang Z Y, Liu Y Y, Zheng Z K, Cheng H F, Huang B B. Constructing a bifunctional MoO2/Co heterojunction for efficient electrocatalytic hydrogen evolution and hydrazine oxidation[J]. J. Mater. Chem. A, 2022,10:17297-17306. doi: 10.1039/D2TA03659B
Ren J T, Wu X M, Liu T, Chen L, Hao R, Song Y J, Liu Y P, Yuan Z Y. Interfacing nickel with molybdenum oxides as monolithic catalyst to accelerate alkaline hydrogen electrocatalysis with robust stability[J]. Appl. Catal. B-Environ., 2022,317121786. doi: 10.1016/j.apcatb.2022.121786
Ni S, Qu H N, Xing H F, Xu Z H, Zhu X Y, Yuan M L, Wang L, Yu J M, Li Y Q, Yang L R, Liu H Z. Donor-acceptor couples of metal and metal oxides with enriched Ni3+ active sites for oxygen evolution[J]. ACS Appl. Mater. Interfaces, 2021,13(15):17501-17510. doi: 10.1021/acsami.1c00890
Cai J, Ding J, Wei D, Xie X, Li B, Lu S, Zhang J, Liu Y, Cai Q, Zang S. Coupling of Ru and O-vacancy on 2D Mo-based electrocatalyst via a solid-phase interface reaction strategy for hydrogen evolution reaction[J]. Adv. Energy Mater., 2021,112100141. doi: 10.1002/aenm.202100141
YANG C, ZHAO X Y, ZHANG Z L. Preparation and electrochemical performance of porous carbon/selenium composite free-standing electrode[J]. Chinese J. Inorg. Chem., 2021,37(11):1922-1930. doi: 10.11862/CJIC.2021.242
ZHAO Y, PENG M, TAN Y W. Research progress on three dimensional self-supporting electrodes in hydrogen evolution reaction[J]. Materials China, 2018,37(4):241-253.
Ye Q L, Li J, Liu X Y, Xu X T, Wang F, Li B. Surface pattern of NiCo hydroxide nanoplate arrays electrocatalysts for the oxygen evolution reaction[J]. J. Power Sources, 2019,412:10-17. doi: 10.1016/j.jpowsour.2018.10.075
Wang Z L, Mao X, Chen P, Xiao M, Monny S A, Wang S C, Konarova M, Du A J, Wang L Z. Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes[J]. Angew. Chem. Int. Ed., 2019,58(4):1030-1034. doi: 10.1002/anie.201810583
Yu F, Zhou H Q, Huang Y F, Sun J Y, Qin F, Bao J M, Goddard Ⅲ W A, Chen S, Ren Z F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting[J]. Nat. Commun., 2018,9(1)2551. doi: 10.1038/s41467-018-04746-z
Chen W S, Gu J J, Du Y P, Song F, Bu F X, Li J H, Yuan Y, Luo R C, Liu Q L, Zhang D. Achieving rich and active alkaline hydrogen evolution heterostructures via interface engineering on 2D 1T-MoS2 quantum sheets[J]. Adv. Funct. Mater., 2020,30(25)2000551. doi: 10.1002/adfm.202000551
Ma L B, Hu Y, Chen R P, Zhu G Y, Chen T, Lv H L, Wang Y R, Liang J, Liu H X, Yan C Z, Zhu H F, Tie Z X, Jin Z, Liu J. Self- assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution[J]. Nano Energy, 2016,24:139-147. doi: 10.1016/j.nanoen.2016.04.024
Bao J, Zhang X D, Fan B, Zhang J J, Zhou M, Yang W L, Hu X, Wang H, Pan B C, Xie Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation[J]. Angew. Chem. Int. Ed., 2015,54(25):7399-7404. doi: 10.1002/anie.201502226
Moon S H, Kim M J, Im S H. Synthesis of lustering two-dimensional α-MoO3 van der Waals crystals by TiO2 assisted selective facet passivation[J]. J. Ind. Eng. Chem., 2020,84:358-365. doi: 10.1016/j.jiec.2020.01.019
Ye Q L, Li L F, Li H Y, Gu X Y, Han B M, Xu X T, Wang F, Li B. Quasi-parallel NiFe layered double hydroxide nanosheet arrays for large-current-density oxygen evolution electrocatalysis[J]. ChemSusChem, 2022,152101873.
Razavi M, Sookhakian M, Goh B T, Bahron H, Mahmoud E Y, Alias Y. Molybdenum disulfide nanosheets decorated with platinum nanoparticle as a high active electrocatalyst in hydrogen evolution reaction[J]. Nanoscale Res. Lett., 2022,179. doi: 10.1186/s11671-021-03644-6
Krstajić N, Popović M, Grgur B, Vojnović M, Sepa D. On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution-Part Ⅰ. The mechanism[J]. J. Electroanal. Chem., 2001,512(1):16-26.
Alobaid A, Wang C S, Adomaitis R A. Mechanism and kinetics of HER and OER on NiFe LDH films in an alkaline electrolyte[J]. J. Electroanal. Chem., 2018,165(15):3395-3404. doi: 10.1149/2.0481815jes
Wu Q K, Luo Y T, Xie R K, Nong H Y, Cai Z Y, Tang L, Tan J Y, Feng S M, Zhao S L, Yu Q M, Lin J H, Chai G L, Liu B L. Space- confined one-step growth of 2D MoO2/MoS2 vertical heterostructures for superior hydrogen evolution in alkaline electrolytes[J]. Small, 2022,182201051. doi: 10.1002/smll.202201051
Zhang Z Q, Lin X F, Tang S L, Xie H J, Huang Q T. Self-supported system of MoO2@Ni2P heterostructures as an efficient electrocatalyst for hydrogen evolution reactions in alkaline media[J]. J. Colloid Interface Sci., 2023,630:494-501. doi: 10.1016/j.jcis.2022.10.041
Yu F, Zhou H Q, Huang Y F, Sun J Y, Qin F, Bao J M, Goddardiii W A, Chen S, Ren Z F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting[J]. Nat. Commun., 2018,9(1)2551. doi: 10.1038/s41467-018-04746-z
Chen W S, Gu J J, Du Y P, Song F, Bu F X, Li J H, Yuan Y, Luo R C, Liu Q L, Zhang D. Achieving rich and active alkaline hydrogen evolution heterostructures via interface engineering on 2D 1T-MoS2 quantum sheets[J]. Adv. Funct. Mater., 2020,30(25)2000551. doi: 10.1002/adfm.202000551
Yu L, Mishra I K, Xie Y L, Zhou H Q, Sun J Y, Zhou J Q, Ni Y Z, Luo D, Yu F, Yu Y, Chen S, Ren Z F. Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density[J]. Nano Energy, 2018,53:492-500. doi: 10.1016/j.nanoen.2018.08.025
Xue S, Liu Z B, Ma C Q, Cheng H M, Ren W C. A highly active and durable electrocatalyst for large current density hydrogen evolution reaction[J]. Sci. Bull., 2019,65(2):123-130.
Yu C, Xu F, Luo L, Abbo H S, Titinchi S J J, Shen P K, Tsiakaras P, Yin S B. Bimetallic Ni-Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction[J]. Electrochim. Acta, 2019,317:191-198. doi: 10.1016/j.electacta.2019.05.150
Qian G F, Yu G T, Lu J J, Luo L, Wang T, Zhang C H, Ku R Q, Yin S B, Chen W, Mu S C. Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density[J]. J. Mater. Chem. A, 2020,8(29):14545-14554. doi: 10.1039/D0TA04388E
Liu S L, Chen C, Zhang Y F, Zheng Q H, Zhang S D, Mu X Q, Chen C Y, Ma J M, Mu S C. Vacancy-coordinated hydrogen evolution reaction on MoO3-x anchored atomically dispersed MoRu pairs[J]. J. Mater. Chem. A, 2019,7(24):14466-14472. doi: 10.1039/C9TA03719E
Wang Y M, Qian G F, Xu Q L, Zhang H, Shen F, Luo L, Yin S B. Industrially promising IrNi-FeNi3 hybrid nanosheets for overall water splitting catalysis at large current density[J]. Appl. Catal. B- Environ., 2021,286119881. doi: 10.1016/j.apcatb.2021.119881
Yang D, Cao L Y, Feng L L, Huang J F, Feng Y Q, Liu Q Q, He D Y, Wang J. Controlled synthesis of V-doped heterogeneous Ni3S2/NiS nanorod arrays as efficient hydrogen evolution electrocatalysts[J]. Langmuir, 2020,37(1):357-365.
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
(a, b) CoFe LDH nanoarrays; (c) CoFeOx/MoO2-0; (d) CoFeOx/MoO2-0.1; (e) CoFeOx/MoO2-0.3; (f) MoO2-0.1.
(a, b) CoFeOx/MoO2-0; (c, d) CoFeOx/MoO2-0.1; (e, f) MoO2-0.1; (g, h) CoFeOx/MoO2-0.1.
(Ⅰ) CoFeOx/MoO2-0; (Ⅱ) CoFeOx/MoO2-0.1; (Ⅲ) CoFeOx/MoO2-0.3; (Ⅳ) MoO2-0.1; (Ⅴ) CoFe LDH; (Ⅵ) Bare Ni foam.
(Ⅰ) CoFeOx/MoO2-0; (Ⅱ) CoFeOx/MoO2-0.1; (Ⅲ) CoFeOx/MoO2-0.3; (Ⅳ) MoO2-0.1; (Ⅴ) CoFe LDH; (Ⅵ) Bare Ni foam.
(a) Mo3d; (b) Co2p; (c) Ni2p; (d) Fe2p; (e) O1s.