Citation: Xiang YANG, Ming-Hui ZHANG, Kai CHEN, Ran LI, Xiu-Du ZHANG. Co(Ⅱ)-based metal-organic frameworks containing bipyridyl ligands and terephthalic acid as fluorescent probes for Fe(Ⅲ)[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1244-1252. doi: 10.11862/CJIC.2023.095 shu

Co(Ⅱ)-based metal-organic frameworks containing bipyridyl ligands and terephthalic acid as fluorescent probes for Fe(Ⅲ)

Figures(4)

  • The ligands 1, 4-bis(2-(2-pyridyl)ethenyl)benzene (2-bpeb) and 1, 2-di(pyridin-4-yl)ethene (dpe) have been employed to react with terephthalic acid (H2PTA) and Co(NO3)2 under solvothermal conditions to fabricate two novel Co(Ⅱ)-MOFs (1 and 2). The structure of 1 manifests a 3D framework constituted by the Co-2-bpeb and Co-PTA chains, while complex 2 is a 3D framework constructed from the Co-PTA layers connected by the dpe ligand. Due to the existence of a large π-conjugated system in the pyridyl ligands and in consideration of the practical application, the fluorescence properties of 1 and 2 were investigated and the sensing experiments revealed that both of them could be used as a fluorescent sensor for detecting Fe3+ with good sensitivity and recyclability.
  • 加载中
    1. [1]

      Bao C L, Bi S G, Zhang H, Zhao J L, Wang P F, Yue C Y, Yang J L. Graphene oxide beads for fast clean-up of hazardous chemicals[J]. J. Mater. Chem. A, 2016,4:9437-9446. doi: 10.1039/C6TA01411A

    2. [2]

      Choi J, Kim J H, Oh J W, Nam J M. Surface-enhanced raman scattering-based detection of hazardous chemicals in various phases and matrices with plasmonic nanostructures[J]. Nanoscale, 2019,11:20379-20391. doi: 10.1039/C9NR07439B

    3. [3]

      Eto K. Minamata disease[J]. Neuropathology, 2000,20:14-19. doi: 10.1046/j.1440-1789.2000.00295.x

    4. [4]

      Haagen S A J. Chemistry and physiology of Los-Angeles smog[J]. Ind. Eng. Chem., 1952,44:1342-1346. doi: 10.1021/ie50510a045

    5. [5]

      Whittaker A, Kelly B, Jones T, Maynard , Richards R. Killer smog of London, 50 years on: Particle properties and oxidative capacity[J]. Sci. Total Environ., 2004,334:435-445.

    6. [6]

      Chen H J, Fan P, Tu X X, Min H, Yu X Y, Li X F, Zeng J L, Zhang S W, Cheng P. A bifunctional luminescent metal-organic framework for the sensing of paraquat and Fe3+ ions in water[J]. Chem.-Asian J., 2019,14(20):3611-3619. doi: 10.1002/asia.201900682

    7. [7]

      Collman J P, Boulatov R, Sunderland C J, Fu L. Functional analogues of cytochrome c oxidase, myoglobin and hemoglobin[J]. Chem. Rev., 2004,104:561-588. doi: 10.1021/cr0206059

    8. [8]

      Liu X, Theil E C. Ferritins: Dynamic management of biological iron and oxygen chemistry[J]. Acc. Chem. Res., 2005,38:167-175. doi: 10.1021/ar0302336

    9. [9]

      Jeffrey B, McQuaid , Adam B K, Miroslav O, Ales H, John P M, Bogumil J K, Hong Z, Theodor K, Andreas J A, Katherine A B, Andrew E A. Carbonate-sensitive phyto transferrin controls high-affinity iron uptake in diatoms[J]. Nature, 2018,555:534-537. doi: 10.1038/nature25982

    10. [10]

      Rahul M, Debanjan C, Shyamapada N, Ankit K Y, Dinesh M, Vinod C. P., Ramanathan V. PAqueous-phase differentiation and speciation of Fe3+ and Fe2+ using water-stable photoluminescent lanthanide-based metal-organic framework[J]. ACS Appl. Nano Mater., 2019,2:5169-5178. doi: 10.1021/acsanm.9b01047

    11. [11]

      Lv R, Chen Z H Y, Fu X, Yang B Y, Li H, Su J, Gu W, Liu X. A highly selective and fast-response fluorescent probe based on Cd-MOF for the visual detection of Al3+ ion and quantitative detection of Fe3+ ion[J]. J. Solid State Chem., 2018,259:67-72. doi: 10.1016/j.jssc.2017.12.033

    12. [12]

      Li X S, Jun D A, Zhang H M, Liu J J, Li Y, Du G X, Wu X X, Fei L, Lacoste J D, Cai Z, Liu Y Y, Huo J Z, Ding B. Cluster-based Ca, Mg and Cd coordination polymers based on amino-functionalized tri-phenyl tetra-carboxylate: Bi-functional photo-luminescent sensing for Fe3+ and antibiotics[J]. Dyes Pigment., 2019,170107631. doi: 10.1016/j.dyepig.2019.107631

    13. [13]

      Zhao L L, Xin X, Ding P, Song A X, Xie Z C, Shen J L, Xu G Y. Fluorescent oligomer as a chemosensory for the label-free detection of Fe3+ and dopamine with selectivity and sensitivity[J]. Anal. Chim. Acta, 2016,926:99-106. doi: 10.1016/j.aca.2016.04.038

    14. [14]

      Zheng Y T, Wang H L, Jiang J Z. A porous tetraphenylethylene-based polymer for fast-response fluorescence sensing of Fe(Ⅲ) ion and nitrobenzene[J]. Dyes Pigment., 2020,173107929. doi: 10.1016/j.dyepig.2019.107929

    15. [15]

      Zhou X S, Fan Q, Ye H X, Xing K, Wang A N, Wang P, Hao S E, Yang Y L. A dual associated-functional fluorescent switch: From alternate detection cycle for Fe(Ⅲ) and pH to molecular logic operations[J]. Inorg. Chem., 2016,58:2122-2132.

    16. [16]

      Dong M J, Zhao M, Ou S, Zou C, Wu C D. A luminescent dye@MOF platform: Emission fingerprint relationships of volatile organic molecules[J]. Angew. Chem. Int. Ed., 2014,53:1575-1579. doi: 10.1002/anie.201307331

    17. [17]

      Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chem. Soc. Rev., 2014,43:5815-5840. doi: 10.1039/C4CS00010B

    18. [18]

      Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications[J]. Chem. Soc. Rev., 2017,46:3242-3285. doi: 10.1039/C6CS00930A

    19. [19]

      Wang B, Lv L, Feng D, Xie L H, Zhang J, Li M, Xie Y, Li J R, Zhou H C. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. J. Am. Chem. Soc., 2016,138:6204-6216. doi: 10.1021/jacs.6b01663

    20. [20]

      Zhang X D, Zhao Y, Chen K, Jiang Y F, Sun W Y. Water-stable coordination polymers as dual fluorescent sensors for highly oxidizing anions Cr2O72- and MnO4-[J]. Chem.-Asian J., 2019,14:3620-3626. doi: 10.1002/asia.201900633

    21. [21]

      Chen B L, Wang L B, Zapata F, Qian G D, Lobkovsky E B. A luminescent microporous metal-organic framework for the recognition and sensing of anions[J]. J. Am. Chem. Soc., 2008,130:6718-6719. doi: 10.1021/ja802035e

    22. [22]

      Zhang C L, Liu Z T, Xu H, Zheng H G, Ma J, Zhao J. An excellent example illustrating the fluorescence sensing property of cobalt-organic frameworks[J]. Dalton Trans., 2019,48:22850-2289.

    23. [23]

      Zhang X D, Hua A, Guo H J, Zhao Y, Sun W Y. Cadmium(Ⅱ) coordination polymers based on 2-(4-((E)-2-(pyridine-2-yl)vinyl)styryl)pyridine and dicarboxylate ligands as fluorescent sensors for TNP[J]. J. Mater. Chem. C, 2018,6:12623-12630. doi: 10.1039/C8TC04557G

    24. [24]

      Liu H J, Tao X T, Yang X, Yan Y X, Ren Y, Zhao H P, Xin Q, Yu W T, Jiang M H. Three-dimensional metal-organic network architecture with large π-conjugated indolocarbazole derivative: synthesis, supramolecular structure, and highly enhanced fluorescence[J]. Cryst. Growth Des., 2008,261:259-264.

    25. [25]

      Khatun A, Panda D K, Sayresmith N, Walter M G, Saha S. Thiazolothiazole-based luminescent metal-organic frameworks with ligand-to-ligand energy transfer and Hg2+-sensing capabilities[J]. Inorg. Chem., 2019,58:12707-12715. doi: 10.1021/acs.inorgchem.9b01595

    26. [26]

      Vizuet J P, Howlett T S, Lewis A L, Chroust Z D, McCandless G T, Balkus K J. Transition from a 1D coordination polymer to a mixed-linker layered MOF[J]. Inorg. Chem., 2019,58:5031-5041. doi: 10.1021/acs.inorgchem.9b00077

    27. [27]

      Nabuurs R J A, Kapoerchan V V, Metaxas A, Hafith S, Backer M, Welling M M, Jiskoot W, Nieuwendijk A M, Windhorst A D, Overkleeft H S, Buchem M A, Overhand M, Weerd L. Bis-pyridylethenyl benzene as novel backbone for amyloid-β binding compounds[J]. Bioorg. Med. Chem., 2016,24:6139-6148. doi: 10.1016/j.bmc.2016.05.022

    28. [28]

      SAINT, Program for data extraction and reduction. Bruker AXS, Inc., Madison, WI, 2001.

    29. [29]

      Sheldrick G M. SADABS, Program for empirical adsorption correction of area detector data. University of Göttingen, Germany, 2003.

    30. [30]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    31. [31]

      Yang L, Powell D R, Houser R P. Structural variation in copper(Ⅰ) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4[J]. Dalton Trans., 2007,9:955-964.

    32. [32]

      Li X H, Yang S Z, Xiao H P. Synthesis and crystal structure of two interpenetrated open frameworks with different structural motifs[J]. Cryst. Growth Des., 2006,6(10):2392-2397. doi: 10.1021/cg060426a

    33. [33]

      Luo L, Chen K, Liu Q, Lu Y, Okamura T A, Lv G C, Zhao Y, Sun W Y. Zinc(Ⅱ) and cadmium(Ⅱ) complexes with 1, 3, 5-benzenetricarboxylate and imidazole-containing ligands: Structural variation via reaction temperature and solvent[J]. Cryst. Growth Des., 2013,13:2312-2321. doi: 10.1021/cg301815w

    34. [34]

      Cao L H, Shi F, Zhang W M, Zang S Q, Mak T C W. Selective sensing of Fe3+ and Al3+ ions and detection of 2, 4, 6-trinitrophenol by a water-stable terbium-based metal-organic framework[J]. Chem.-Eur. J., 2015,21:15705-15712. doi: 10.1002/chem.201501162

    35. [35]

      Zhao D, Liu X H, Zhao Y, Wang P, Liu Y, Azam M, Al-Resayes S I, Lu Y, Sun W Y. Luminescent Cd(Ⅱ)-organic frameworks with chelating NH2 sites for selective detection of Fe(Ⅲ) and antibiotics[J]. J. Mater. Chem, A, 2017,5:15797-15807. doi: 10.1039/C7TA03849F

    36. [36]

      Xing B, Li Y H, Zhu Y Y, Zhao Z, Sun G, Yang D, Li J. Two fluorescent lead phosphonates for highly selective sensing of nitroaromatics (NACs), Fe3+ and MnO4- ions[J]. RSC Adv., 2016,6:110255-110265. doi: 10.1039/C6RA21403G

    37. [37]

      Hou B L, Tian D, Liu J, Dong L Z, Li S L, Li D S, Lan Y Q. A water-stable metal-organic framework for highly sensitive and selective sensing of Fe3+ ion[J]. Inorg. Chem., 2016,55:10580-10586. doi: 10.1021/acs.inorgchem.6b01809

    38. [38]

      LIU Z Q, CAO S H, ZHANG Z, WU J F, ZHAO Y, SUN W Y. Metal-organic frameworks with 2, 6-di(1H-imidazol-1-yl)naphthalene and dicarboxylate ligands: Synthesis, crystal structure and photoluminescence sensing property[J]. Chinese J. Inorg. Chem., 2019,35(11):2145-2151. doi: 10.11862/CJIC.2019.225 

    39. [39]

      LIU Z Q, HUANG Y Q, SUN W Y. Progress in fluorescent recognition and sensing of solvent and small organic molecules based on metal-organic frameworks[J]. Chinese J. Inorg. Chem., 2017,33(11):1959-1969. doi: 10.11862/CJIC.2017.244 

    40. [40]

      XU X Y, CUI H L, LIU W, CHEN X L, YANG H, LIU L, WANG J J. Synthesis and fluorescence sensing for Fe3+ and p-nitrophenol of a copper coordination polymer[J]. Chinese J. Inorg. Chem., 2022,38(12):2539-2549. doi: 10.11862/CJIC.2022.253 

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    11. [11]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    12. [12]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    16. [16]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    17. [17]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(1)
  • Abstract views(1316)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return