Processing math: 100%

Citation: Xiang YANG, Ming-Hui ZHANG, Kai CHEN, Ran LI, Xiu-Du ZHANG. Co(Ⅱ)-based metal-organic frameworks containing bipyridyl ligands and terephthalic acid as fluorescent probes for Fe(Ⅲ)[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1244-1252. doi: 10.11862/CJIC.2023.095 shu

Co(Ⅱ)-based metal-organic frameworks containing bipyridyl ligands and terephthalic acid as fluorescent probes for Fe(Ⅲ)

Figures(4)

  • The ligands 1, 4-bis(2-(2-pyridyl)ethenyl)benzene (2-bpeb) and 1, 2-di(pyridin-4-yl)ethene (dpe) have been employed to react with terephthalic acid (H2PTA) and Co(NO3)2 under solvothermal conditions to fabricate two novel Co(Ⅱ)-MOFs (1 and 2). The structure of 1 manifests a 3D framework constituted by the Co-2-bpeb and Co-PTA chains, while complex 2 is a 3D framework constructed from the Co-PTA layers connected by the dpe ligand. Due to the existence of a large π-conjugated system in the pyridyl ligands and in consideration of the practical application, the fluorescence properties of 1 and 2 were investigated and the sensing experiments revealed that both of them could be used as a fluorescent sensor for detecting Fe3+ with good sensitivity and recyclability.
  • 自20世纪60年代以来,一系列骇人听闻的污染事件爆发,对环境安全和人体健康造成了严重的危害,污染问题受到了越来越多人的关注[1-3]。金属材料在各种工业生产和人们日常生活中不可或缺,金属离子特别是重金属离子成为各种污染物中最值得关注的一类。铁(Fe)作为一种应用最为广泛的金属,大量存在于工业生产、日常生活中;同时由于单质铁性质较为活泼,易发生各种反应,因此更容易直接或间接进入到环境中,从而让人暴露在富含Fe的环境中。人们在长期接触Fe后,Fe被人体吸收诱发头痛、恶心、腹泻、泌尿系统病变、骨软化等疾病[4-6]。另一方面,Fe3+作为生物系统中含量最丰富的过渡金属元素之一,广泛存在于各种酶、蛋白质和一些细胞色素中,如血红蛋白、肌红蛋白、铁蛋白和转铁蛋白等[7-9],在许多生物化学和生理过程中有着非常重要的作用。机体中Fe3+的缺乏常会导致缺铁性贫血,影响儿童生长发育和免疫系统[10-12]。因此,开发能够检测Fe3+的新材料具有重要意义。

    迄今为止,各种荧光探针如量子点、纳米粒子、低聚物、聚合物等,因其灵敏度高、响应快等优点而得到广泛的研究,在检测Fe3+时也表现出了极具潜力的应用前景[13-15]。在过去的10年中,荧光金属有机骨架(metal-organic frameworks,MOFs)材料由于其多孔结构及可调节的荧光性质而受到越来越多研究者的关注,同时其荧光传感性能也得到了深入的研究,在金属离子、挥发性有机化合物(VOCs)、硝基爆炸物、阴离子、氨基酸、pH、温度等多种物质和参数的检测方面表现出了很高的发展潜力[16-21]。作为一类由金属离子/团簇与桥联的有机配体组成的结晶多孔材料,MOFs的荧光性质与所使用的有机配体和金属中心的性质有很大的关系[17-18]。在金属中心方面,关于d10电子组态的过渡金属(Zn2+、Cd2+)和镧系金属离子的荧光探针的报道层出不穷,而非d10电子组态过渡金属离子(Ni2+、Co2+等)的金属荧光探针由于发射性能较低,作为荧光传感器的报道却很少[22]。在有机配体方面,根据以往的研究,基于大π共轭体系配体的MOFs通常具有良好的荧光性能[23-24],并且与单配体体系相比,混合配体策略由于结构骨架具有更大的可调性,被证明是构建新型MOFs的有效途径[25-26]。因此,我们选用乙烯基的联吡啶,即1,4-二(2-(2-吡啶基)乙烯基)苯(2-bpeb)和1,2-二(4-吡啶基)乙烯(dpe)为主要配体,对苯二甲酸(H2PTA)作为次要配体,通过混合配体与Co(NO3)2进行反应,得到了2种新型Co(Ⅱ)-MOFs:[Co(2-bpeb)(PTA)] (1)和[Co(dpe)(PTA)]·DMF (2)。单晶X射线衍射(SC-XRD)分析表明,配合物1是由Co-2-bpeb和Co-PTA链构成的三维结构,配合物2则是Co-PTA层通过dpe桥联形成双层互穿的三维结构。荧光传感实验表明,配合物12都可以作为荧光探针来检测Fe3+,并且具有良好的灵敏度和可回收性。

    所用试剂均为市售分析纯试剂,使用前未经任何纯化处理。配体2-bpeb是按照文献[27]方法在实验室合成所得。傅里叶变换红外光谱(FT‑IR)在Bruker Vector 22 FT-IR光谱仪上使用KBr压片法测量,波长范围400~4 000 cm-1。热重分析(TGA)数据用Mettler Toledo(TGA/DSC1)热重分析仪,在氮气氛围下以10 ℃·min-1升温速率在30~800 ℃范围内测量。所有样品的粉末X射线衍射(PXRD)数据都是在室温条件下,在Rigaku SmartLab X射线衍射仪上以Cu 辐射(λ=0.154 06 nm)作为衍射光源采集得到,其中X射线管在40 kV和40 mA下运行,扫描范围为5°~50°。荧光光谱是在Perkin Elmer LS-55荧光分光光度计上测试。紫外可见光谱(UV-Vis)则是用岛津UV3600分光光度计在室温下获得。量子产率和荧光寿命测试是在HORIBA JobinYvon Fluoromax-4光谱仪上进行。

    将2-bpeb(8.5 mg,0.03 mmol)、H2PTA(5.8 mg,0.03 mmol)、Co(NO3)2·6H2O(8.9 mg,0.03 mmol)、DMF(4 mL)和H2O(4 mL)的混合物密封在聚四氟乙烯的高压反应釜中,于烘箱85 ℃下反应50 h,冷却至室温后可获得紫色块状晶体1,产率为49%。元素分析(C28H20N2O4Co)计算值(%):C,66.28;H,3.93;N,5.52。实验值(%):C,66.12;H,4.04;N,5.59。FT-IR(KBr,cm-1):3 225(m),3 051(w),1 641(m),1 589(s),1 512(s),1 477(s),1 435(m),1 397(s),1 302(w),1 245(w),1 153(w),1 098(w),1 013(w),973(s),868(m),827(m),790(s),747(m),688(w),553(w),457(w)(图S1,Supporting information)。

    将dpe(8.5 mg,0.03 mmol)、H2PTA(5.8 mg,0.03 mmol)、Co(NO3)2·6H2O(8.9 mg,0.03 mmol)、DMF(4 mL)和H2O(4 mL)的混合物密封在聚四氟乙烯的高压反应釜中,于烘箱85 ℃下反应50 h,冷却至室温后可获得了紫色块状晶体2,产率为49%。元素分析(C23H21N3O5Co)的计算值(%):C,57.75;H,4.42;N,8.78。实验值(%):C,57.62;H,4.50;N,8.62。FT-IR(KBr,cm-1):3 452(w),3 059(w),2 926(w),2 837(w),1 678(s),1 601(s),1 500(m),1 394(s),1 296(w),1 254(w),1 209(w),1 092(m),1 014(w),988(w),833(m),746(m),660(w),554(m)(图S1)。

    在进行荧光实验之前,先将制备得到的配合物12的固体样品充分研磨,并分别在去离子水(1)和DMF (2)中超声浸泡30 min后,得到稳定的悬浮液(1 mg·mL-1)。首先,在室温条件下研究了配合物12的荧光性质。接着,为探究其对金属离子的选择性检测,将不同的M(NO3)x溶液(Mx+=Na+,K+,Rb+,Cs+,Mg2+,Ca2+,Sr2+,Ba2+,Cr3+,Mn2+,Fe3+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+,Pb2+,Al3+)加入到配合物12的悬浮液中,在376和341 nm激发波长下,分别记录配合物12在400~700 nm和365~650 nm范围内的荧光光谱。在定量荧光滴定实验中,逐滴加入一定浓度M(NO3)x溶液(10 mmol·L-1)后,分别记录下相应的荧光发射光谱。所有荧光实验过程中悬浮液均以恒定速率搅拌以确保混合均匀。每次实验重复3次保证数据的可靠性。

    配合物1的晶体数据是在Bruker Smart Apex Ⅱ CCD单晶衍射仪上进行的,采用经石墨单色化的Mo 射线(λ=0.071 073 nm)作为衍射源。配合物2的晶体数据则采集于Bruker D8 Venture Photon Ⅱ单晶衍射仪,该衍射仪具有石墨单色化的Ga 辐射(λ=0.134 139 nm)。利用SAINT程序对衍射数据进行还原,并对洛伦兹和极化效应进行强度校正[28]。采用SADABS程序进行半经验吸收校正[29]。利用SHELXL-2018/3晶体学软件解出晶体结构[30]。用全矩阵最小二乘技术在F2上对所有非氢原子均呈各向异性精修。所有非溶剂氢原子均通过理论加氢法得到。相关晶体学参数和结构精修信息如表 1所示,部分键长、键角则列于表S1中。

    表 1

    表 1  配合物1和2的晶体学参数和结构精修信息
    Table 1.  Crystal data and structure refinements for complexes 1 and 2
    下载: 导出CSV
    Parameter 1 2
    Formula C28H20N2O4Co C23H21N3O5Co
    Formula weight 507.39 478.36
    T / K 173(2) 193(2)
    Crystal system Monoclinic Orthorhombic
    Space group C2/c Pbca
    a / nm 0.178 82(2) 0.137 38(6)
    b / nm 0.066 854(7) 0.161 44(8)
    c / nm 0.203 85(3) 0.190 58(15)
    β / (°) 115.651(4)
    V / nm3 2.196 8(5) 4.227(4)
    Z 4 8
    Dc / (g·cm-3) 1.534 1.503
    F(000) 1 044 1 976
    θ range for data collection / (°) 2.217-27.485 4.036-53.942
    Reflection collected 5 169 20 457
    Unique reflection 2 492 3 860
    Goodness-of-fit on F 2 1.072 1.257
    R1, wR2 [I > 2σ(I)]a, b 0.036 9, 0.090 5 0.047 7, 0.157 5
    R1, wR2 (all data) 0.046 6, 0.094 9 0.055 0, 0.162 8
    aR1=Fo||Fc/|Fo|;bwR2=[w(Fo2Fc2)/w(Fo)2]1/2, where w=1/[σ2(Fo2)+(aP)2+bP],P=(Fo2+2Fc2)/3.
    2.1.1   配合物1的晶体结构分析

    SC-XRD分析显示,配合物1属于单斜晶系C2/c空间群,不对称单元由单个[Co(2-bpeb)(PTA)]分子组成。如图 1a所示,Co1位于扭曲的三棱锥(τ=0.87)配位构型中,与来自吡啶配体2-bpeb的2个氮原子(N1、N1#1)和羧酸配体PTA2-的2个氧原子(O2、O2A)配位[31]。Co—N和Co—O键长分别是0.208 45(18)和0.201 39(15) nm。对1的结构进行分析,发现联吡啶基配体2-bpeb由2个Co2+离子连接,构成一维的“V”型配位链,而羧酸配体PTA2-之间则通过羧酸基与Co2+离子以(κ1)-(κ1)-μ2-PTA2-的配位方式连接,形成1D配位链(图 1b1c)。此外,这些Co-2-bpeb链和Co-PTA链相互交错,最终构成三维骨架结构(图 1d)。在1的结构中,2-bpeb之间、2-bpeb与PTA2-之间的ππ堆积、C—H…π、氢键等非共价键作用也有利于三维骨架结构的稳定(图S2a)。

    图 1

    图 1.  (a) 配合物1的椭球率30%的Co2+配位环境椭球图; (b) Co2+-2-bpeb一维链; (c) Co2+-PTA一维链; (d)三维结构
    Figure 1.  (a) Coordination environment of Co2+ in complex 1 with the ellipsoids drawn at the 30% probability level; (b) Co2+-2-bpeb 1D chain; (c) Co2+-PTA 1D chain; (d) 3D structure

    Hydrogen atoms are omitted for clarity; Symmetry code: #1: 1-x, y, 0.5-z.

    2.1.2   配合物2的晶体结构分析

    根据SC-XRD的测试结果可知,配合物2结晶于正交晶系Pbca空间群,每个不对称单元包含1个Co2+离子,1个dpe分子和1个PTA2-离子。如图 2a所示,Co1与羧酸配体PTA2-上的3个O原子(O1、O2#1、O3#2)和吡啶配体dpe的2个N原子(N1、N2#3)配位,形成扭曲的三角双锥配位构型。在配合物2的结构中,每个羧酸配体PTA2-以(κ1)-(κ1)-(κ2)-μ3-PTA2-的配位模式与3个Co2+离子相连,每个Co2+离子与3个不同的PTA2-配体结合,从而形成了二维的Co-PTA配位聚合物网状结构(图 2b)。此外,这些Co-PTA二维层通过N原子和Co2+离子的配位作用被dpe柱支撑,构成沿abc轴都有较大孔道的三维Co-PTA-dpe配位聚合物骨架结构(图 2c)。因该骨架结构具有较高的孔隙率和较大的孔道,在C—H…π、氢键作用下,最终形成了三维二重贯穿骨架结构(图 2d)。需要指出的是,2006年李新华教授课题组曾报道过基于联吡啶配体dpe和H2PTA的Co(Ⅱ)-基MOFs结构[32]。通过对比二者结构发现,虽二者空间群不同,但是结构极其相似,均为三维二重贯穿骨架结构,区别在于溶剂、反应时间和温度等合成条件不同。这也佐证了配合物合成条件影响其最终的结构[33]

    图 2

    图 2.  (a) 配合物2的椭球率30%的Co2+配位环境椭球图; (b) Co-PTA形成的二维结构; (c) dpe柱支撑Co-PTA二维结构形成的三维结构; (d)三维二重互穿结构
    Figure 2.  Coordination environment of Co2+ in complex 2 with the ellipsoids drawn at the 30% probability level; (b) 2D network formed by Co-PTA; (c) 3D framework constructed from the 2D Co-PTA network pillared by dpe; (d) 3D two-fold interpenetrated structure

    Hydrogen atoms are omitted for clarity; Symmetry codes: #1:-x, -y+1, -z+1; #2: -x, y-1/2, -z+3/2; #3: x-1, y, z.

    用PXRD测定制备得到的配合物12的纯度。测试结果表明,制备得到的配合物12的PXRD峰位与根据单晶结构获得的模拟峰位吻合较好(图S3),表明合成的样品为纯相。

    用TGA检验配合物12的热稳定性。如图S4所示,配合物1在骨架分解之前没有明显的重量损失,其骨架结构可以稳定到360 ℃,这与SC-XRD分析结果一致。而配合物2在30~275 ℃的失重率为15.41%,可以归结于配合物2中DMF分子的释放(理论值15.28%);此外还可以看到配合物2的骨架在390 ℃左右开始坍塌。

    由于2-bpeb和dpe中的吡啶基通过C=C连接在有机配体中形成了一个大的π共轭体系。因此,我们进行了一系列的实验来探索配合物12对不同金属离子的荧光响应。首先研究了配合物1的水悬浮液和配合物2的DMF悬浮液(均为1 mg·mL-1)的荧光性质。如图S5所示,配合物12在悬浮液中均表现出了明显的特征发射峰,最大发射波长分别为460和418 nm,对应的激发波长分别为376和341 nm。此外,在室温条件下考察了12对金属离子的荧光传感能力。将含有不同金属离子(50 μL,0.5 mol·L-1)的水溶液加入到配合物12的悬浮液中,其中包括常见的碱金属离子(Na+、K+、、Rb+、Cs+)、碱土金属离子(Mg2+、Ca2+、Sr2+、Ba2+)、过渡金属离子(Cr3+、Mn2+、Fe2+、Fe3+、Co2+、Ni2+、Cu2+、Zn2+、Cd2+)和一些其他常见的金属离子(Pb2+、Al3+),记录在加入这些金属离子溶液后的荧光发射峰,并比较它们的荧光发射峰强度。从图 3结果可以看出,配合物12的荧光发射峰在Fe3+存在下都被显著猝灭,而在其他金属离子存在的条件下,只有轻微或中等强度的荧光减弱或荧光增强。这一现象表明,配合物12可以通过荧光猝灭现象作为荧光传感器选择性识别Fe3+ [34-40]

    图 3

    图 3.  配合物1 (a)和2 (b)在不同金属离子溶液中荧光强度的变化, 表明对Fe3+的选择性检测优于其他金属离子
    Figure 3.  Changes in the fluorescence intensities of complexes 1 (a) and 2 (b) in the solutions of different metal ions, revealing selective detection of Fe3+ over other metal ions

    I0 and I are the fluorescence intensities before and after the addition of metal ions, respectively.

    基于以上结果,我们继续研究配合物12对Fe3+荧光传感的灵敏度。通过向12的悬浮液中逐步加入浓度为0.01 mol·L-1的Fe(NO3)3溶液,可发现:配合物12的荧光强度随着Fe3+浓度的增加而逐渐减弱(图 4a4c)。在悬浮液中滴加250 μL的Fe(NO3)3水溶液,通过猝灭效率公式(I0-I)/I0(I0I分别表示加入污染物前后的荧光强度)计算得出猝灭效率大于90%。此外,为定量分析猝灭常数(KSV),根据Stern-Volmer(SV)公式,绘制了相对强度(I0/I)与Fe3+浓度的关系图。如图 4b4d所示,SV图明显向上弯曲,而不是与Fe3+的浓度呈现线性关系,这表明猝灭过程是静态或静态和动态途径相结合的结果。在动态猝灭的过程中,荧光寿命减小[45]。荧光寿命测量结果如图S6所示,配合物12的荧光寿命在加入Fe3+前后几乎没有变化,这证明该荧光猝灭过程是静态猝灭。因此,可以应用非线性SV方程I0/I=AekcQ+B(其中ABk是常数,cQ是被分析物的浓度)并可以根据KSV=Ak计算猝灭常数。如图 4b图 4d所示,实验数据和非线性方程拟合度较高,相关系数(R2)大于0.995。计算得到配合物12KSV分别为1.34×104和2.87×103 L·mol-1,这与已经报道的基于MOFs的Fe3+荧光传感器相当[47,49](表S2)。

    图 4

    图 4.  配合物1 (a)和2 (c)的H2O/DMF悬浮液在逐渐滴加Fe3+溶液(cFe3+)=0.01 mol•L-1)后的荧光猝灭; 1 (b)和2 (d)的I0/IcFe3+)变化的SV图
    Figure 4.  Fluorescence quenching of 1 (a) and 2 (c) dispersed in H2O/DMF by gradual addition of Fe3+ solution (cFe3+)=0.01 mol•L-1); SV plots of I0/I vs cFe3+) for 1 (b) and 2 (d)

    此外,为探究配合物12检测Fe3+的循环性能。当荧光传感实验结束后,将悬浮液离心,分别用H2O (1)或DMF (2)进行多次洗涤后,再次用于检测Fe3+。如图S7所示,经过3次循环后,配合物12的荧光强度和猝灭效率基本不变。上述结果表明,配合物12检测Fe3+具有较高的灵敏度和可循环性。

    接着,进一步探讨Fe3+引起配合物12荧光猝灭的可能机理。首先,配合物12在Fe3+浸泡后的PXRD图几乎不变,说明配合物12的荧光猝灭不是由骨架的坍塌引起的(图S8a)。其次,引起荧光猝灭的反应时间快,表明荧光淬灭机理不应归因于离子交换。因此,假设荧光共振能量转移或竞争能量吸收可以导致荧光猝灭。为了验证可能的机理,测定了含有不同M(NO3)x水溶液的紫外可见吸收光谱。如图S8b和S8c所示,Fe3+的吸收光谱与配合物1的水悬浮液的发射光谱几乎没有重叠,而配合物1的激发光谱与Fe3+的吸收光谱存在明显重叠,这表明猝灭现象可能是体系中竞争能量吸收导致的[46-49]

    采用混合配体策略,选用2种乙烯基的联吡啶配体1,4-二(2-(2-吡啶基)乙烯基)苯(2-bpeb)和1,2-二(4-吡啶基)乙烯(dpe)与对苯二甲酸(H2PTA)和Co(NO3)2反应,通过溶剂热合成获得了2种新型Co(Ⅱ)基MOFs,分子式分别为[Co(2-bpeb)(PTA)] (1)和[Co(dpe)(PTA)]·DMF (2)。根据SC-XRD分析,配合物1是由Co-2-bpeb和Co-PTA链组成的三维骨架,而配合物2是由dpe柱支撑的Co-PTA层组成的三维二重贯穿骨架结构。这2种MOFs都可以作为检测Fe3+的荧光传感器, 且都具有良好的灵敏度和可循环性。


    Supporting information is available at http://www.wjhxxb.cn
    1. [1]

      Bao C L, Bi S G, Zhang H, Zhao J L, Wang P F, Yue C Y, Yang J L. Graphene oxide beads for fast clean-up of hazardous chemicals[J]. J. Mater. Chem. A, 2016,4:9437-9446. doi: 10.1039/C6TA01411A

    2. [2]

      Choi J, Kim J H, Oh J W, Nam J M. Surface-enhanced raman scattering-based detection of hazardous chemicals in various phases and matrices with plasmonic nanostructures[J]. Nanoscale, 2019,11:20379-20391. doi: 10.1039/C9NR07439B

    3. [3]

      Eto K. Minamata disease[J]. Neuropathology, 2000,20:14-19. doi: 10.1046/j.1440-1789.2000.00295.x

    4. [4]

      Haagen S A J. Chemistry and physiology of Los-Angeles smog[J]. Ind. Eng. Chem., 1952,44:1342-1346. doi: 10.1021/ie50510a045

    5. [5]

      Whittaker A, Kelly B, Jones T, Maynard , Richards R. Killer smog of London, 50 years on: Particle properties and oxidative capacity[J]. Sci. Total Environ., 2004,334:435-445.

    6. [6]

      Chen H J, Fan P, Tu X X, Min H, Yu X Y, Li X F, Zeng J L, Zhang S W, Cheng P. A bifunctional luminescent metal-organic framework for the sensing of paraquat and Fe3+ ions in water[J]. Chem.-Asian J., 2019,14(20):3611-3619. doi: 10.1002/asia.201900682

    7. [7]

      Collman J P, Boulatov R, Sunderland C J, Fu L. Functional analogues of cytochrome c oxidase, myoglobin and hemoglobin[J]. Chem. Rev., 2004,104:561-588. doi: 10.1021/cr0206059

    8. [8]

      Liu X, Theil E C. Ferritins: Dynamic management of biological iron and oxygen chemistry[J]. Acc. Chem. Res., 2005,38:167-175. doi: 10.1021/ar0302336

    9. [9]

      Jeffrey B, McQuaid , Adam B K, Miroslav O, Ales H, John P M, Bogumil J K, Hong Z, Theodor K, Andreas J A, Katherine A B, Andrew E A. Carbonate-sensitive phyto transferrin controls high-affinity iron uptake in diatoms[J]. Nature, 2018,555:534-537. doi: 10.1038/nature25982

    10. [10]

      Rahul M, Debanjan C, Shyamapada N, Ankit K Y, Dinesh M, Vinod C. P., Ramanathan V. PAqueous-phase differentiation and speciation of Fe3+ and Fe2+ using water-stable photoluminescent lanthanide-based metal-organic framework[J]. ACS Appl. Nano Mater., 2019,2:5169-5178. doi: 10.1021/acsanm.9b01047

    11. [11]

      Lv R, Chen Z H Y, Fu X, Yang B Y, Li H, Su J, Gu W, Liu X. A highly selective and fast-response fluorescent probe based on Cd-MOF for the visual detection of Al3+ ion and quantitative detection of Fe3+ ion[J]. J. Solid State Chem., 2018,259:67-72. doi: 10.1016/j.jssc.2017.12.033

    12. [12]

      Li X S, Jun D A, Zhang H M, Liu J J, Li Y, Du G X, Wu X X, Fei L, Lacoste J D, Cai Z, Liu Y Y, Huo J Z, Ding B. Cluster-based Ca, Mg and Cd coordination polymers based on amino-functionalized tri-phenyl tetra-carboxylate: Bi-functional photo-luminescent sensing for Fe3+ and antibiotics[J]. Dyes Pigment., 2019,170107631. doi: 10.1016/j.dyepig.2019.107631

    13. [13]

      Zhao L L, Xin X, Ding P, Song A X, Xie Z C, Shen J L, Xu G Y. Fluorescent oligomer as a chemosensory for the label-free detection of Fe3+ and dopamine with selectivity and sensitivity[J]. Anal. Chim. Acta, 2016,926:99-106. doi: 10.1016/j.aca.2016.04.038

    14. [14]

      Zheng Y T, Wang H L, Jiang J Z. A porous tetraphenylethylene-based polymer for fast-response fluorescence sensing of Fe(Ⅲ) ion and nitrobenzene[J]. Dyes Pigment., 2020,173107929. doi: 10.1016/j.dyepig.2019.107929

    15. [15]

      Zhou X S, Fan Q, Ye H X, Xing K, Wang A N, Wang P, Hao S E, Yang Y L. A dual associated-functional fluorescent switch: From alternate detection cycle for Fe(Ⅲ) and pH to molecular logic operations[J]. Inorg. Chem., 2016,58:2122-2132.

    16. [16]

      Dong M J, Zhao M, Ou S, Zou C, Wu C D. A luminescent dye@MOF platform: Emission fingerprint relationships of volatile organic molecules[J]. Angew. Chem. Int. Ed., 2014,53:1575-1579. doi: 10.1002/anie.201307331

    17. [17]

      Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chem. Soc. Rev., 2014,43:5815-5840. doi: 10.1039/C4CS00010B

    18. [18]

      Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications[J]. Chem. Soc. Rev., 2017,46:3242-3285. doi: 10.1039/C6CS00930A

    19. [19]

      Wang B, Lv L, Feng D, Xie L H, Zhang J, Li M, Xie Y, Li J R, Zhou H C. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. J. Am. Chem. Soc., 2016,138:6204-6216. doi: 10.1021/jacs.6b01663

    20. [20]

      Zhang X D, Zhao Y, Chen K, Jiang Y F, Sun W Y. Water-stable coordination polymers as dual fluorescent sensors for highly oxidizing anions Cr2O72- and MnO4-[J]. Chem.-Asian J., 2019,14:3620-3626. doi: 10.1002/asia.201900633

    21. [21]

      Chen B L, Wang L B, Zapata F, Qian G D, Lobkovsky E B. A luminescent microporous metal-organic framework for the recognition and sensing of anions[J]. J. Am. Chem. Soc., 2008,130:6718-6719. doi: 10.1021/ja802035e

    22. [22]

      Zhang C L, Liu Z T, Xu H, Zheng H G, Ma J, Zhao J. An excellent example illustrating the fluorescence sensing property of cobalt-organic frameworks[J]. Dalton Trans., 2019,48:22850-2289.

    23. [23]

      Zhang X D, Hua A, Guo H J, Zhao Y, Sun W Y. Cadmium(Ⅱ) coordination polymers based on 2-(4-((E)-2-(pyridine-2-yl)vinyl)styryl)pyridine and dicarboxylate ligands as fluorescent sensors for TNP[J]. J. Mater. Chem. C, 2018,6:12623-12630. doi: 10.1039/C8TC04557G

    24. [24]

      Liu H J, Tao X T, Yang X, Yan Y X, Ren Y, Zhao H P, Xin Q, Yu W T, Jiang M H. Three-dimensional metal-organic network architecture with large π-conjugated indolocarbazole derivative: synthesis, supramolecular structure, and highly enhanced fluorescence[J]. Cryst. Growth Des., 2008,261:259-264.

    25. [25]

      Khatun A, Panda D K, Sayresmith N, Walter M G, Saha S. Thiazolothiazole-based luminescent metal-organic frameworks with ligand-to-ligand energy transfer and Hg2+-sensing capabilities[J]. Inorg. Chem., 2019,58:12707-12715. doi: 10.1021/acs.inorgchem.9b01595

    26. [26]

      Vizuet J P, Howlett T S, Lewis A L, Chroust Z D, McCandless G T, Balkus K J. Transition from a 1D coordination polymer to a mixed-linker layered MOF[J]. Inorg. Chem., 2019,58:5031-5041. doi: 10.1021/acs.inorgchem.9b00077

    27. [27]

      Nabuurs R J A, Kapoerchan V V, Metaxas A, Hafith S, Backer M, Welling M M, Jiskoot W, Nieuwendijk A M, Windhorst A D, Overkleeft H S, Buchem M A, Overhand M, Weerd L. Bis-pyridylethenyl benzene as novel backbone for amyloid-β binding compounds[J]. Bioorg. Med. Chem., 2016,24:6139-6148. doi: 10.1016/j.bmc.2016.05.022

    28. [28]

      SAINT, Program for data extraction and reduction. Bruker AXS, Inc., Madison, WI, 2001.

    29. [29]

      Sheldrick G M. SADABS, Program for empirical adsorption correction of area detector data. University of Göttingen, Germany, 2003.

    30. [30]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    31. [31]

      Yang L, Powell D R, Houser R P. Structural variation in copper(Ⅰ) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4[J]. Dalton Trans., 2007,9:955-964.

    32. [32]

      Li X H, Yang S Z, Xiao H P. Synthesis and crystal structure of two interpenetrated open frameworks with different structural motifs[J]. Cryst. Growth Des., 2006,6(10):2392-2397. doi: 10.1021/cg060426a

    33. [33]

      Luo L, Chen K, Liu Q, Lu Y, Okamura T A, Lv G C, Zhao Y, Sun W Y. Zinc(Ⅱ) and cadmium(Ⅱ) complexes with 1, 3, 5-benzenetricarboxylate and imidazole-containing ligands: Structural variation via reaction temperature and solvent[J]. Cryst. Growth Des., 2013,13:2312-2321. doi: 10.1021/cg301815w

    34. [34]

      Cao L H, Shi F, Zhang W M, Zang S Q, Mak T C W. Selective sensing of Fe3+ and Al3+ ions and detection of 2, 4, 6-trinitrophenol by a water-stable terbium-based metal-organic framework[J]. Chem.-Eur. J., 2015,21:15705-15712. doi: 10.1002/chem.201501162

    35. [35]

      Zhao D, Liu X H, Zhao Y, Wang P, Liu Y, Azam M, Al-Resayes S I, Lu Y, Sun W Y. Luminescent Cd(Ⅱ)-organic frameworks with chelating NH2 sites for selective detection of Fe(Ⅲ) and antibiotics[J]. J. Mater. Chem, A, 2017,5:15797-15807. doi: 10.1039/C7TA03849F

    36. [36]

      Xing B, Li Y H, Zhu Y Y, Zhao Z, Sun G, Yang D, Li J. Two fluorescent lead phosphonates for highly selective sensing of nitroaromatics (NACs), Fe3+ and MnO4- ions[J]. RSC Adv., 2016,6:110255-110265. doi: 10.1039/C6RA21403G

    37. [37]

      Hou B L, Tian D, Liu J, Dong L Z, Li S L, Li D S, Lan Y Q. A water-stable metal-organic framework for highly sensitive and selective sensing of Fe3+ ion[J]. Inorg. Chem., 2016,55:10580-10586. doi: 10.1021/acs.inorgchem.6b01809

    38. [38]

      LIU Z Q, CAO S H, ZHANG Z, WU J F, ZHAO Y, SUN W Y. Metal-organic frameworks with 2, 6-di(1H-imidazol-1-yl)naphthalene and dicarboxylate ligands: Synthesis, crystal structure and photoluminescence sensing property[J]. Chinese J. Inorg. Chem., 2019,35(11):2145-2151. doi: 10.11862/CJIC.2019.225 

    39. [39]

      LIU Z Q, HUANG Y Q, SUN W Y. Progress in fluorescent recognition and sensing of solvent and small organic molecules based on metal-organic frameworks[J]. Chinese J. Inorg. Chem., 2017,33(11):1959-1969. doi: 10.11862/CJIC.2017.244 

    40. [40]

      XU X Y, CUI H L, LIU W, CHEN X L, YANG H, LIU L, WANG J J. Synthesis and fluorescence sensing for Fe3+ and p-nitrophenol of a copper coordination polymer[J]. Chinese J. Inorg. Chem., 2022,38(12):2539-2549. doi: 10.11862/CJIC.2022.253 

    1. [1]

      Bao C L, Bi S G, Zhang H, Zhao J L, Wang P F, Yue C Y, Yang J L. Graphene oxide beads for fast clean-up of hazardous chemicals[J]. J. Mater. Chem. A, 2016,4:9437-9446. doi: 10.1039/C6TA01411A

    2. [2]

      Choi J, Kim J H, Oh J W, Nam J M. Surface-enhanced raman scattering-based detection of hazardous chemicals in various phases and matrices with plasmonic nanostructures[J]. Nanoscale, 2019,11:20379-20391. doi: 10.1039/C9NR07439B

    3. [3]

      Eto K. Minamata disease[J]. Neuropathology, 2000,20:14-19. doi: 10.1046/j.1440-1789.2000.00295.x

    4. [4]

      Haagen S A J. Chemistry and physiology of Los-Angeles smog[J]. Ind. Eng. Chem., 1952,44:1342-1346. doi: 10.1021/ie50510a045

    5. [5]

      Whittaker A, Kelly B, Jones T, Maynard , Richards R. Killer smog of London, 50 years on: Particle properties and oxidative capacity[J]. Sci. Total Environ., 2004,334:435-445.

    6. [6]

      Chen H J, Fan P, Tu X X, Min H, Yu X Y, Li X F, Zeng J L, Zhang S W, Cheng P. A bifunctional luminescent metal-organic framework for the sensing of paraquat and Fe3+ ions in water[J]. Chem.-Asian J., 2019,14(20):3611-3619. doi: 10.1002/asia.201900682

    7. [7]

      Collman J P, Boulatov R, Sunderland C J, Fu L. Functional analogues of cytochrome c oxidase, myoglobin and hemoglobin[J]. Chem. Rev., 2004,104:561-588. doi: 10.1021/cr0206059

    8. [8]

      Liu X, Theil E C. Ferritins: Dynamic management of biological iron and oxygen chemistry[J]. Acc. Chem. Res., 2005,38:167-175. doi: 10.1021/ar0302336

    9. [9]

      Jeffrey B, McQuaid , Adam B K, Miroslav O, Ales H, John P M, Bogumil J K, Hong Z, Theodor K, Andreas J A, Katherine A B, Andrew E A. Carbonate-sensitive phyto transferrin controls high-affinity iron uptake in diatoms[J]. Nature, 2018,555:534-537. doi: 10.1038/nature25982

    10. [10]

      Rahul M, Debanjan C, Shyamapada N, Ankit K Y, Dinesh M, Vinod C. P., Ramanathan V. PAqueous-phase differentiation and speciation of Fe3+ and Fe2+ using water-stable photoluminescent lanthanide-based metal-organic framework[J]. ACS Appl. Nano Mater., 2019,2:5169-5178. doi: 10.1021/acsanm.9b01047

    11. [11]

      Lv R, Chen Z H Y, Fu X, Yang B Y, Li H, Su J, Gu W, Liu X. A highly selective and fast-response fluorescent probe based on Cd-MOF for the visual detection of Al3+ ion and quantitative detection of Fe3+ ion[J]. J. Solid State Chem., 2018,259:67-72. doi: 10.1016/j.jssc.2017.12.033

    12. [12]

      Li X S, Jun D A, Zhang H M, Liu J J, Li Y, Du G X, Wu X X, Fei L, Lacoste J D, Cai Z, Liu Y Y, Huo J Z, Ding B. Cluster-based Ca, Mg and Cd coordination polymers based on amino-functionalized tri-phenyl tetra-carboxylate: Bi-functional photo-luminescent sensing for Fe3+ and antibiotics[J]. Dyes Pigment., 2019,170107631. doi: 10.1016/j.dyepig.2019.107631

    13. [13]

      Zhao L L, Xin X, Ding P, Song A X, Xie Z C, Shen J L, Xu G Y. Fluorescent oligomer as a chemosensory for the label-free detection of Fe3+ and dopamine with selectivity and sensitivity[J]. Anal. Chim. Acta, 2016,926:99-106. doi: 10.1016/j.aca.2016.04.038

    14. [14]

      Zheng Y T, Wang H L, Jiang J Z. A porous tetraphenylethylene-based polymer for fast-response fluorescence sensing of Fe(Ⅲ) ion and nitrobenzene[J]. Dyes Pigment., 2020,173107929. doi: 10.1016/j.dyepig.2019.107929

    15. [15]

      Zhou X S, Fan Q, Ye H X, Xing K, Wang A N, Wang P, Hao S E, Yang Y L. A dual associated-functional fluorescent switch: From alternate detection cycle for Fe(Ⅲ) and pH to molecular logic operations[J]. Inorg. Chem., 2016,58:2122-2132.

    16. [16]

      Dong M J, Zhao M, Ou S, Zou C, Wu C D. A luminescent dye@MOF platform: Emission fingerprint relationships of volatile organic molecules[J]. Angew. Chem. Int. Ed., 2014,53:1575-1579. doi: 10.1002/anie.201307331

    17. [17]

      Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chem. Soc. Rev., 2014,43:5815-5840. doi: 10.1039/C4CS00010B

    18. [18]

      Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications[J]. Chem. Soc. Rev., 2017,46:3242-3285. doi: 10.1039/C6CS00930A

    19. [19]

      Wang B, Lv L, Feng D, Xie L H, Zhang J, Li M, Xie Y, Li J R, Zhou H C. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. J. Am. Chem. Soc., 2016,138:6204-6216. doi: 10.1021/jacs.6b01663

    20. [20]

      Zhang X D, Zhao Y, Chen K, Jiang Y F, Sun W Y. Water-stable coordination polymers as dual fluorescent sensors for highly oxidizing anions Cr2O72- and MnO4-[J]. Chem.-Asian J., 2019,14:3620-3626. doi: 10.1002/asia.201900633

    21. [21]

      Chen B L, Wang L B, Zapata F, Qian G D, Lobkovsky E B. A luminescent microporous metal-organic framework for the recognition and sensing of anions[J]. J. Am. Chem. Soc., 2008,130:6718-6719. doi: 10.1021/ja802035e

    22. [22]

      Zhang C L, Liu Z T, Xu H, Zheng H G, Ma J, Zhao J. An excellent example illustrating the fluorescence sensing property of cobalt-organic frameworks[J]. Dalton Trans., 2019,48:22850-2289.

    23. [23]

      Zhang X D, Hua A, Guo H J, Zhao Y, Sun W Y. Cadmium(Ⅱ) coordination polymers based on 2-(4-((E)-2-(pyridine-2-yl)vinyl)styryl)pyridine and dicarboxylate ligands as fluorescent sensors for TNP[J]. J. Mater. Chem. C, 2018,6:12623-12630. doi: 10.1039/C8TC04557G

    24. [24]

      Liu H J, Tao X T, Yang X, Yan Y X, Ren Y, Zhao H P, Xin Q, Yu W T, Jiang M H. Three-dimensional metal-organic network architecture with large π-conjugated indolocarbazole derivative: synthesis, supramolecular structure, and highly enhanced fluorescence[J]. Cryst. Growth Des., 2008,261:259-264.

    25. [25]

      Khatun A, Panda D K, Sayresmith N, Walter M G, Saha S. Thiazolothiazole-based luminescent metal-organic frameworks with ligand-to-ligand energy transfer and Hg2+-sensing capabilities[J]. Inorg. Chem., 2019,58:12707-12715. doi: 10.1021/acs.inorgchem.9b01595

    26. [26]

      Vizuet J P, Howlett T S, Lewis A L, Chroust Z D, McCandless G T, Balkus K J. Transition from a 1D coordination polymer to a mixed-linker layered MOF[J]. Inorg. Chem., 2019,58:5031-5041. doi: 10.1021/acs.inorgchem.9b00077

    27. [27]

      Nabuurs R J A, Kapoerchan V V, Metaxas A, Hafith S, Backer M, Welling M M, Jiskoot W, Nieuwendijk A M, Windhorst A D, Overkleeft H S, Buchem M A, Overhand M, Weerd L. Bis-pyridylethenyl benzene as novel backbone for amyloid-β binding compounds[J]. Bioorg. Med. Chem., 2016,24:6139-6148. doi: 10.1016/j.bmc.2016.05.022

    28. [28]

      SAINT, Program for data extraction and reduction. Bruker AXS, Inc., Madison, WI, 2001.

    29. [29]

      Sheldrick G M. SADABS, Program for empirical adsorption correction of area detector data. University of Göttingen, Germany, 2003.

    30. [30]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    31. [31]

      Yang L, Powell D R, Houser R P. Structural variation in copper(Ⅰ) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4[J]. Dalton Trans., 2007,9:955-964.

    32. [32]

      Li X H, Yang S Z, Xiao H P. Synthesis and crystal structure of two interpenetrated open frameworks with different structural motifs[J]. Cryst. Growth Des., 2006,6(10):2392-2397. doi: 10.1021/cg060426a

    33. [33]

      Luo L, Chen K, Liu Q, Lu Y, Okamura T A, Lv G C, Zhao Y, Sun W Y. Zinc(Ⅱ) and cadmium(Ⅱ) complexes with 1, 3, 5-benzenetricarboxylate and imidazole-containing ligands: Structural variation via reaction temperature and solvent[J]. Cryst. Growth Des., 2013,13:2312-2321. doi: 10.1021/cg301815w

    34. [34]

      Cao L H, Shi F, Zhang W M, Zang S Q, Mak T C W. Selective sensing of Fe3+ and Al3+ ions and detection of 2, 4, 6-trinitrophenol by a water-stable terbium-based metal-organic framework[J]. Chem.-Eur. J., 2015,21:15705-15712. doi: 10.1002/chem.201501162

    35. [35]

      Zhao D, Liu X H, Zhao Y, Wang P, Liu Y, Azam M, Al-Resayes S I, Lu Y, Sun W Y. Luminescent Cd(Ⅱ)-organic frameworks with chelating NH2 sites for selective detection of Fe(Ⅲ) and antibiotics[J]. J. Mater. Chem, A, 2017,5:15797-15807. doi: 10.1039/C7TA03849F

    36. [36]

      Xing B, Li Y H, Zhu Y Y, Zhao Z, Sun G, Yang D, Li J. Two fluorescent lead phosphonates for highly selective sensing of nitroaromatics (NACs), Fe3+ and MnO4- ions[J]. RSC Adv., 2016,6:110255-110265. doi: 10.1039/C6RA21403G

    37. [37]

      Hou B L, Tian D, Liu J, Dong L Z, Li S L, Li D S, Lan Y Q. A water-stable metal-organic framework for highly sensitive and selective sensing of Fe3+ ion[J]. Inorg. Chem., 2016,55:10580-10586. doi: 10.1021/acs.inorgchem.6b01809

    38. [38]

      LIU Z Q, CAO S H, ZHANG Z, WU J F, ZHAO Y, SUN W Y. Metal-organic frameworks with 2, 6-di(1H-imidazol-1-yl)naphthalene and dicarboxylate ligands: Synthesis, crystal structure and photoluminescence sensing property[J]. Chinese J. Inorg. Chem., 2019,35(11):2145-2151. doi: 10.11862/CJIC.2019.225 

    39. [39]

      LIU Z Q, HUANG Y Q, SUN W Y. Progress in fluorescent recognition and sensing of solvent and small organic molecules based on metal-organic frameworks[J]. Chinese J. Inorg. Chem., 2017,33(11):1959-1969. doi: 10.11862/CJIC.2017.244 

    40. [40]

      XU X Y, CUI H L, LIU W, CHEN X L, YANG H, LIU L, WANG J J. Synthesis and fluorescence sensing for Fe3+ and p-nitrophenol of a copper coordination polymer[J]. Chinese J. Inorg. Chem., 2022,38(12):2539-2549. doi: 10.11862/CJIC.2022.253 

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    12. [12]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    13. [13]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    19. [19]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    20. [20]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

Metrics
  • PDF Downloads(2)
  • Abstract views(2211)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return