Citation: He-Lin WANG, Zhi-Liang GUO, Bo-Zhi LIU, Zhuang-Ze WU, Li-Xu LEI. Less solvent solid-state consecutive coordination reaction of copper chloride[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1536-1544. doi: 10.11862/CJIC.2023.093 shu

Less solvent solid-state consecutive coordination reaction of copper chloride

  • Corresponding author: Li-Xu LEI, lixu.lei@seu.edu.cn
  • Received Date: 16 January 2023
    Revised Date: 23 April 2023

Figures(6)

  • The less solvent solid-state reaction (LSR) between CuCl2·2H2O and NH4Cl in a little water produced only (NH4)2[CuCl4(H2O)2] since NH4[CuCl3] was not stable in water; however, in a little absolute ethanol at 60 ℃, the LSR produced NH4[CuCl3], or (NH4)2[CuCl4] according to the mixed stoichiometric ratio. The LSR of CuCl2 and NH4Cl in a 1∶2 molar ratio proceeds in two steps: the formation of NH4[CuCl3] at an early stage and a further reaction between NH4[CuCl3] and remaining NH4Cl to form the final product (NH4)2[CuCl4]. In contrast, the LSR of CuCl2·2H2O and 2, 2′-bipyridine (bipy) in 1∶1 molar ratio in a little water produced solely [Cu(bipy)Cl2], but the 1∶2 product, [Cu(bipy)2Cl2]·2H2O did appear in its early stage. The reason may be that the structure of the solid CuCl2·2H2O, which is polymerized planer trans-[CuCl2(H2O)2], converts to molecular trans-[CuCl2(H2O)4] in water, and the latter makes the activation energy of successive substitution of two H2O molecules by bipy closer. Thus, bipy rapidly and successively replaces four water molecules in trans-[CuCl2(H2O)4] to form a 1∶2 product. This surprising result indicates that the LSR of [Cu(bipy)2Cl2]·2H2O and CuCl2·2H2O is also spontaneous, and according to thermodynamics, it is possible if the ΔrG of the second reaction is bigger than that of the first one of the consecutive reactions. Therefore, the LSR could also proceed stepwise, which is hard to find in solution reactions.
  • 加载中
    1. [1]

      XIN X Q, ZHENG L M. Solid state reaction at room temperature and low-heating temperature[J]. University Chemistry, 1994,9(6):1-7.  

    2. [2]

      LEI L X, ZHOU Y M. Solvent-free or less-solvent solid state reactions[J]. Prog. Chem, 2020,32(8):1158-1171.  

    3. [3]

      Anastas P, Eghbali N. Green chemistry: Principles and practice[J]. Chem. Soc. Rev., 2010,39(1):301-312. doi: 10.1039/B918763B

    4. [4]

      Ardila-Fierro K J, Hernandez J G. Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry[J]. ChemSusChem, 2021,14(10):2145-2162. doi: 10.1002/cssc.202100478

    5. [5]

      Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New tools to navigate the uncharted territory of "impossible" reactions[J]. ChemSusChem, 2022,15(17)e202200362.

    6. [6]

      HAN W K, TIAN L, XU Z L, ZHU W, LI Z H, LI T, GU Z G, LI Z J. Self-sorting of binuclear Schiff-base complexes under solvent-free grinding conditions[J]. Chinese J. Inorg. Chem, 2017,33(4):550-559.  

    7. [7]

      TAN J, LI Z F, YANG X F, LI J, ZHANG T T. Effect of dry and wet environment of ball milling on visible light catalytic performance of sulfur-doped carbon nitride[J]. Chinese J. Inorg. Chem, 2020,36(3):475-484.  

    8. [8]

      WU W J, LI Y T, FENG Q, DING W X. Perovskite dual-function passivator: Room temperature ionic liquid obtained from mechanochemical preparation[J]. Acta Chim. Sin, 2022,80(11):1469-1475.  

    9. [9]

      JIANG H L, LIU C, LEI L X. Ammonium carnallite prepared from a less-solvent solid state reaction[J]. University Chemistry, 2021,36(12)2102008.  

    10. [10]

      Kamyshny A. Solubility of cyclooctasulfur in pure water and sea water at different temperatures[J]. Geochim. Cosmochim. Acta, 2009,73(20):6022-6028. doi: 10.1016/j.gca.2009.07.003

    11. [11]

      Wang H L, Liu C, Jiang H L, Guo Z L, Zheng Y P, Qi Q, Lei L X. A laboratory experiment on preparation of 3PbO·PbSO4·H2O using less solvent solid state reaction for undergraduate students[J]. Educ. Chem. Eng., 2023,43:92-99.

    12. [12]

      Li C X, Lei L X, Xin X Q. Synthesis of M(biN)nCl2 by solid-solid reactions[J]. Chin. Sci. Bull., 1994(4):349-350.

    13. [13]

      Lei L X, Xin X Q. Stepwise reaction of CuCl2·2H2O with 2, 2'-bipyridyl in the solid state[J]. J. Solid State Chem., 1995,119(2):299-303.

    14. [14]

      Lei L X, Xin X Q. Solid state synthesis of a new compound Cu(HQ)Cl2 and its formation reaction[J]. Thermochim. Acta, 1996,273:61-67.

    15. [15]

      Lei L X, Wang Z, Xin X Q. The solid state reaction of CuCl2·2H2O and 8-hydroxylquinoline[J]. Thermochim. Acta, 1997,297(1/2):193-197.

    16. [16]

      Lei L X, Jing S, Walton R I, Xin X Q, O'Hare D. Investigation of the solid state reaction of FeSO4·7H2O with 1, 10-phenanthroline[J]. J. Chem. Soc.-Dalton Trans., 2002,18(18):3477-3481.

    17. [17]

      Kinyon J S, Clark R, Dalal N S, Choi E S. Ferroelectricity in the gapless quantum antiferromagnet NH4CuCl3[J]. Phys. Rev. B, 2015,92(14)144103.

    18. [18]

      Kinyon J S, Dalal N S, Clark R J, Zhou H D, Choi K Y. Closing the spin gap of (NH4)xK1-xCuCl3 through chemical substitution[J]. Phys. Rev. Mater., 2021,5(5)054413.

    19. [19]

      Shiramura W, Takatsu K, Kurniawan B, Tanaka H, Uekusa H, Ohashi Y, Takizawa K, Mitamura H, Goto T. Magnetization plateaus in NH4CuCl3[J]. J. Phys. Soc. Jpn.,, 1998,67(5):1548-1551.

    20. [20]

      Canhota F P, Salomã o G C, Carvalho N M F, Antunes O A C. Cyclohexane oxidation catalyzed by 2, 2'-bipyridyl Cu? complexes[J]. Catal. Commun., 2008,9(1):182-185.

    21. [21]

      Sirdeshmukh D B, Deshpand V T. X-ray measurement of thermal expansion of ammonium chloride[J]. Acta Crystallogr. Sect. A, 1970,A26(2)295.

    22. [22]

      Brownstein S, Han N F, Gabe E, Lepage Y. A redetermination of the crystal-structure of cupric chloride dihydrate[J]. Z. Kristall., 1989,189(1/2):13-15.

    23. [23]

      Bhakaytamhane S N, Sequeira A, Chidambaram R. Disorder of ammonium ions in diammonium tetrachlorocuprate dihydrate, (NH4)2CuCl4·2H2O: A high-precision neutron diffraction study[J]. Acta Crystallogr. Sect. B, 1980,B36(12):2925-2929.

    24. [24]

      Burns P C, Hawthorne F C. Tolbachite, CuCl2, the first example of Cu2+ octahedrally coordinated by Cl-[J]. Am. Miner., 1993,78(1/2):187-189.

    25. [25]

      O'Bannon G, Willet R D. A redetermination of the crystal structure of NH4CuCl3 and a magnetic study of NH4CuX3 (X=Cl, Br)[J]. Inorg. Chim. Acta, 1981,53:L131-L132.

    26. [26]

      Willett R D. Crystal structure of (NH4)2CuCl4[J]. J. Chem. Phys., 1964,41(8):2243-2244.

    27. [27]

      Louis B, Detoni C, Carvalho N M F, Duarte C D, Antunes O A C. Cu? bipyridine and phenanthroline complexes: Tailor-made catalysts for the selective oxidation of tetralin[J]. Appl. Catal. A-Gen., 2009,360(2):218-225.

    28. [28]

      Engberg Å, Staffansson L I. An X-Ray Refinement of the Crystal Structure of Copper? chloride dihydrate[J]. Acta Chem. Scand., 1970,24(10):3510-3526.

    29. [29]

      Medeiros F E O, Araujo B S, Ayala A P. Raman spectroscopy investigation of the thermal stability of the multiferroic CuCl2 and its hydrated form[J]. Vib. Spectrosc., 2018,99:1-6.

    30. [30]

      Fronczek F R, Collins S N, Chan J Y. Refinement of ferrous sulfate heptahydrate (melanterite) with low-temperature CCD data[J]. Acta Crystallogr. Sect. E., 2001,57(4):i26-i27.

    31. [31]

      Speight J G. Lange's Handbook of Chemistry. New York: McGraw-Hill, 2005: 363-379

  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    5. [5]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    10. [10]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    13. [13]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    14. [14]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    17. [17]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    18. [18]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    19. [19]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(0)
  • Abstract views(982)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return