Citation: Gao-Bin ZHANG, Qi-Han JI, Fang-Jie CHEN, Jian-Li YAN, Yu-Jie YANG, Jia-Le CHEN. Design, synthesis, and application of triphenylamine-based organoboron complexes with dual-state emission property[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1545-1552. doi: 10.11862/CJIC.2023.087 shu

Design, synthesis, and application of triphenylamine-based organoboron complexes with dual-state emission property

  • Corresponding author: Gao-Bin ZHANG, gbzhang@hpu.edu.cn
  • Received Date: 14 January 2023
    Revised Date: 23 March 2023

Figures(8)

  • A novel tri-branched structure organoboron complex based on triphenylamine (TPAB) was designed and synthesized by Suzuki coupling reaction, condensation reaction, and complexation reaction using tris(4-bromophenyl)amine, 4-aminophenyl boronic acid pinacol ester, 4-(diethylamino)salicylaldehyde and boron trifluoride etherate. The structures of the compounds were characterized by 1H and 13C NMR. The photophysical properties of TPAB in solution and solid state were investigated by UV-Vis absorption and fluorescence spectra. TPAB was a dual-state emission active compound that showed strong fluorescence in both solution and solid state. The absorption peak of TPAB in tetrahydrofuran solution was located at 417 nm and the emission peak was located at 548 nm with a fluorescence quantum yield of 40.49% and a fluorescence lifetime of 1.72 ns. The fluorescence emission peak of the TPAB solid was located at 582 nm with a fluorescence quantum yield of 11.43% and a fluorescence lifetime of 0.72 ns. In addition, the fluorescence property of the compound was stable and was not affected by pH, metal ions, amino acids, and pressure. Based on the excellent fluorescence property, TPAB was applied for cell imaging that performed bright fluorescence in HepG2 cells under one- and two-photon excitation.
  • 加载中
    1. [1]

      Zhang H, Liu X, Gong Y, Yu T, Zhao Y. Synthesis and characterization of SFX-based coumarin derivatives for OLEDs[J]. Dyes Pigm., 2021,185108969. doi: 10.1016/j.dyepig.2020.108969

    2. [2]

      TANG Z Y, GUO H Q, XIAO J, CHEN Z J, XIAO L X. Recent advances on electronic transport materials in OLEDs[J]. Chin. J. Lumin., 2023,44(1):26-36.  

    3. [3]

      Nie Y X, Wang P L, Liang Z H, Ma Q, Su X G. Rational fabrication of a smart electrochemiluminescent sensor: Synergistic effect of a self- luminous Faraday cage and biomimetic magnetic vesicles[J]. Anal. Chem., 2021,93(20):7508-7515. doi: 10.1021/acs.analchem.1c00814

    4. [4]

      Sohrabi H, Javanbakht S, Oroojalian F, Rouhani F, Shaabani A, Majidi M R, Hashemzaei M, Hanifehpour Y, Mokhtarzadeh A, Morsali A. Nanoscale metal-organic frameworks: recent developments in synthesis, modifications and bioimaging applications[J]. Chemosphere, 2021,281130717. doi: 10.1016/j.chemosphere.2021.130717

    5. [5]

      Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chem. Commun., 2001(18):1740-1741. doi: 10.1039/b105159h

    6. [6]

      HAN P B, XU H, AN Z F, CAI Z Y, CAI Z X, CHAO H, CHEN B, CHEN M, CHEN Y, CHI Z G, DAI S T, DING D, DONG Y P, GAO Z Y, GUAN W J, HE Z K, HU J J, HU R, HU Y X, HUANG Q Y, KANG M M, LI D X, LI J S, LI S Z, LI W L, LI Z, LIN X L, LIU H Y, LIU P Y, LOU X D, LV C, MA D G, OU H L, OUYANG J, PENG Q, QIAN J, QIN A J, QU J M, SHI J B, SHUAI Z G, SUN L H, TIAN R, TIAN W J, TONG B, WANG H L, WANG D, WANG H, WANG T, WANG X, WANG Y C, WU S Z, XIA F, XIE Y J, XIONG K, XU B, YAN D P, YANG H B, YANG Q Z, YANG Z Y, YUAN L Z, YUAN W Z, ZANG S Q, ZENG F, ZENG J J, ZENG Z, ZHANG G Q, ZHANG X Y, ZHANG X P, ZHANG Y, ZHANG Y F, ZHANG Z J, ZHAO J, ZHAO Z, ZHAO Z H, ZHAO Z J, TANG B Z. Aggregation-induced emission[J]. Prog. Chem., 2022,34(1):1-130.  

    7. [7]

      Zhao Z, Zhang H K, Lam J W Y, Tang B Z. Aggregation-induced emission: new vistas at the aggregate level[J]. Angew. Chem. Int. Ed., 2020,59:9888-9907. doi: 10.1002/anie.201916729

    8. [8]

      GUI Y X, CHEN K Y, LUO W S, TAN Y H, YAN D Y, WANG D, TANG B Z. Near-infrared-Ⅱ AIE probes for biomedical applications[J]. Chin. J. Lumin, 2023,44(2):356-373.  

    9. [9]

      Belmonte-Vázquez J L, Amador-Sánchez Y A, Rodríguez-Cortés L A, Rodríguez-Molina B. Dual-state emission (DSE) in organic fluorophores: design and applications[J]. Chem. Mater, 2021,33(18):7160-7184. doi: 10.1021/acs.chemmater.1c02460

    10. [10]

      Yin Y N, Ding A X, Yang L M, Kong L, Yang J X. Fusing rigid planar units to engineer twisting molecules as dual-state emitters[J]. Mater. Chem. Front., 2022,6(10):1261-1268. doi: 10.1039/D2QM00067A

    11. [11]

      Zhang H Y, Yang H Y, Zhang M, Lin H, Tao S L, Zheng C J, Zhang X H. A novel orange-red thermally activated delayed fluorescence emitter with high molecular rigidity and planarity realizing 32.5% external quantum efficiency in organic light-emitting diodes[J]. Mater. Horiz., 2022,9(9):2425-2432. doi: 10.1039/D2MH00639A

    12. [12]

      Nijegorodov N, Luhanga P V C, Nkoma J S, Winkoun D P. The influence of planarity, rigidity and internal heavy atom upon fluorescence parameters and the intersystem crossing rate constant in molecules with the biphenyl basis[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2006,64(1):1-5. doi: 10.1016/j.saa.2005.06.032

    13. [13]

      Li H K, Li B S, Tang B Z. Molecular design, circularly polarized luminescence, and helical self-assembly of chiral aggregation- induced emission molecules[J]. Chem.-Asian J., 2019,14(6):674-688. doi: 10.1002/asia.201801469

    14. [14]

      Qiu Q Q, Xu P F, Zhu Y J, Yu J R, Wei M R, Xi W B, Feng H, Chen J R, Qian Z S. Rational design of dual-state emission luminogens with solvatochromism by combining a partially shared donor- acceptor pattern and twisted structures[J]. Chem.-Eur. J., 2019,25(70):15983-15987. doi: 10.1002/chem.201903857

    15. [15]

      Behera S K, Park S Y, Gierschner J. Dual emission: Classes, mechanisms, and conditions[J]. Angew. Chem. Int. Ed., 2021,60:22624-22638. doi: 10.1002/anie.202009789

    16. [16]

      Rodríguez-Cortés L A, Navarro-Huerta A, Rodríguez-Molina B. One molecule to light it all: The era of dual-state emission[J]. Matter, 2021,4(8):2622-2624. doi: 10.1016/j.matt.2021.06.023

    17. [17]

      Ni Y Y, Zhang S S, He X, Huang J Y, Kong L, Yang J Y, Yang J X. Dual-state emission difluoroboron derivatives for selective detection of picric acid and reversible acid/base fluorescence switching[J]. Anal. Methods, 2021,13(25):2830-2835. doi: 10.1039/D1AY00477H

    18. [18]

      Jing T T, Yan L F. pH-responsive dye with dual-state emission in both visible and near infrared regions[J]. Sci. China Chem., 2018,61(7):863-870. doi: 10.1007/s11426-017-9221-6

    19. [19]

      Huang Z, Tang F, Ding A X, He F, Duan R H, Huang J Y, Kong L, Yang J X. D-A-D structured triphenylamine fluorophore with bright dual-state emission for reversible mechanofluorochromism and trace water detection[J]. Mol. Syst. Des. Eng., 2022,7(8):963-968. doi: 10.1039/D2ME00053A

    20. [20]

      LU H B, WU S J, ZHANG C, QIU L Z, YANG J X. Synthesis and photoluminescence property of α-cyanostilbene derivatives molecules[J]. Chin. J. Lumin, 2015,36(9):983-988.  

    21. [21]

      ZHAO C H, ZHAO Y H, LIN J M. Optoelectronic materials of organoboron π-conjugated systems[J]. Prog. Chem, 2009,21(12):2605-2612.  

    22. [22]

      QIN Y Y, XU W J, HU C Y, LIU S J, ZHAO Q. Four-coordinated organoboron compounds with π-conjugated N, C-chelate ligand and their optoelectronic applications[J]. Chinese J. Inorg. Chem, 2017,33(10):1705-1721.  

    23. [23]

      Prates J L B, Pavan A R, Dos Santos J L. Boron in medicinal and organic chemistry[J]. Curr. Org. Chem., 2021,25(16):1853-1867. doi: 10.2174/1385272825666210625120209

    24. [24]

      Kataria M, Kim Y, Chau H D, Kwon N Y, Hong Y J, Kim T, Ko J, Son M K, Bang J, Park S, Kim H I, Lee K, Choi D H. Solvent mediated thermodynamically favorable helical supramolecular self-assembly: Recognition behavior towards achiral and chiral analytes[J]. J. Mater. Chem. C, 2022,1010679. doi: 10.1039/D2TC01113A

    25. [25]

      Gong Y, Guo X M, Wang S F, Su H M, Xia A D, He Q G, Bai F L. Photophysical properties of photoactive molecules with conjugated push-pull structures[J]. J. Phys. Chem. A, 2007,111(26):5806-5812. doi: 10.1021/jp0705323

    26. [26]

      Seo J, Kim J, Park S Y. Strong solvatochromic fluorescence from the intramolecular charge-transfer state created by excited-state intramolecular proton transfer[J]. J. Am. Chem. Soc., 2004,126(36):11154-11155. doi: 10.1021/ja047815i

    27. [27]

      Zhang C L, Liu M S, Liu S X, Yang H, Zhao Q, Liu Z P, He W J. Phosphorescence lifetime imaging of labile Zn2+ in mitochondria via a phosphorescent Iridium? complex[J]. Inorg. Chem., 2018,57:10625-10632. doi: 10.1021/acs.inorgchem.8b01272

  • 加载中
    1. [1]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    2. [2]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    3. [3]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    8. [8]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    9. [9]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    10. [10]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    17. [17]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    18. [18]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    19. [19]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(10)
  • Abstract views(4267)
  • HTML views(386)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return