Citation: Jian-Feng LIAO, Lin SUN, Ruo-Yu CHEN, Jing-Ya DING. Facile synthesis of high nitrogen doped porous carbon nanofibers for high performance sodium ion capacitor[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1349-1359. doi: 10.11862/CJIC.2023.086 shu

Facile synthesis of high nitrogen doped porous carbon nanofibers for high performance sodium ion capacitor

Figures(7)

  • One of the effective approaches to obtaining functional carbon materials is selecting some appropriate biomass materials. In this work, the high nitrogen-doped porous carbon nanofibers (NPCF) can be obtained by one-step pyrolysis of potassium citrate and melamine. The NPCF electrode delivered capacities of 218 and 140 mAh·g-1 at current densities of 0.1 and 1.0 A·g-1, respectively. Concurrently, the sodium ion capacitors (SICs) with NPCF anode show outstanding rate performance and long lifespan for over 2 500 cycles at 1.0 A·g-1.
  • 加载中
    1. [1]

      Zhu J, Roscow J, Chandrasekaran S, Deng L, Zhang P, He T, Wang K, Huang L. Biomass‑derived carbons for sodium-ion batteries and sodium-ion capacitors[J]. ChemSusChem, 2020,13(6):1275-1295. doi: 10.1002/cssc.201902685

    2. [2]

      Poullikkas A. A comparative overview of large-scale battery systems for electricity storage[J]. Renew. Sust. Energ. Rev., 2013,27:778-788. doi: 10.1016/j.rser.2013.07.017

    3. [3]

      Meng Y F, Liang H J, Zhao C D, Li W H, Gu Z Y, Yu M X, Zhao B, Hou X K, Wu X L. Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-Co-workable dual-ion battery[J]. J. Energy Chem., 2022,64:166-171. doi: 10.1016/j.jechem.2021.04.047

    4. [4]

      Liu T H, Liu F, Qu Z H, Chen J L, Liu H, Tan Y Q, Guo J B, Yan Y, Zhao S, Zhao X S, Nie X M, Ma X M, Pei Z X, Liu M K. High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery[J]. Nano Res. Energy, 2023,2e9120049. doi: 10.26599/NRE.2023.9120049

    5. [5]

      Liu T F, Zhang Y P, Jiang Z G, Zeng X Q, Ji J P, Li Z H, Gao X H, Sun M H, Lin Z, Ling M, Zheng J C, Liang C D. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy Environ. Sci., 2019,12(5):1512-1533. doi: 10.1039/C8EE03727B

    6. [6]

      Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: Present and future[J]. Chem. Soc. Rev., 2017,46(12):3529-3614. doi: 10.1039/C6CS00776G

    7. [7]

      Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ. Sci., 2013,6(8):2338-2360. doi: 10.1039/c3ee40847g

    8. [8]

      Liang H J, Gu Z Y, Zheng X Y, Li W H, Zhu L Y, Sun Z H, Meng Y F, Yu H Y, Hou X K, Wu X L. Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries[J]. J. Energy Chem., 2021,59:589-598. doi: 10.1016/j.jechem.2020.11.039

    9. [9]

      Shen F, Zhu H L, Luo W, Wan J Y, Zhou L H, Dai J Q, Zhao B, Han X G, Fu K, Hu L B. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2015,7(41):23291-23296. doi: 10.1021/acsami.5b07583

    10. [10]

      Hong K L, Qie L, Zeng R, Yi Z Q, Zhang W, Wang D, Yin W, Wu C, Fan Q J, Zhang W X, Huang Y H. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. J. Mater. Chem. A, 2014,2(32):12733-12738. doi: 10.1039/C4TA02068E

    11. [11]

      Lv W M, Wen F S, Xiang J Y, Zhao J, Li L, Wang L M, Liu Z Y, Tian Y J. Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries[J]. Electrochim. Acta, 2015,176:533-541. doi: 10.1016/j.electacta.2015.07.059

    12. [12]

      Zhu X M, Jiang X Y, Liu X L, Xiao L F, Cao Y L. A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste[J]. Green Energy Environ., 2017,2(3):310-315. doi: 10.1016/j.gee.2017.05.004

    13. [13]

      Lu P R, Xia J L, Dong X L. Rapid sodium-ion storage in hard carbon anode material derived from Ganoderma lucidum residue with inherent open channels[J]. ACS Sustain. Chem. Eng., 2019,7(17):14841-14847. doi: 10.1021/acssuschemeng.9b02906

    14. [14]

      Wang C, Yu Q T, Zhao N, Li B H, Shen W C, Kang F Y, Huang Z H, Lv R T. g-C3N4 templated mesoporous carbon with abundant heteroatoms as high-rate anode material for dual-carbon sodium ion hybrid capacitors[J]. J. Materiomics, 2022,8(6):1149-1157. doi: 10.1016/j.jmat.2022.06.004

    15. [15]

      Ramachandran K, Subburam G, Liu X H, Huang M G, Xu C, Ng D H L, Cui Y X, Li G C, Qiu J X, Wang C, Lian J B. Nitrogen-doped porous carbon nanofoams with enhanced electrochemical kinetics for superior sodium-ion capacitor[J]. Rare Met., 2022,41(7):2481-2490. doi: 10.1007/s12598-022-01992-5

    16. [16]

      Wang L X, Shen J, Li L, Liu P D, Fang H, Li X F, Song Y H, Zhang L S. Heteroatom-doped hollow carbon micro-tube derived from platanus catkins fiber for sodium ion supercapacitor[J]. Inorg. Chem. Commun., 2020,114107817. doi: 10.1016/j.inoche.2020.107817

    17. [17]

      Fombona-Pascual A, Díez N, Fuertes A B, Sevilla M. Eco-friendly synthesis of 3D disordered carbon materials for high-performance dual carbon Na-ion capacitors[J]. ChemSusChem, 2022,15(19)e202201046.

    18. [18]

      Yan Y, Xu M J, Luo Y Q, Ma J Y, Pang H, Xue H G. Preparation of N, P Co-doped activated carbons derived from honeycomb as an electrode material for supercapacitors[J]. RSC Adv., 2017,7(75):47448-47455. doi: 10.1039/C7RA08759D

    19. [19]

      Diez N, Sevilla M, Fuertes A B. A dual carbon Na-ion capacitor based on polypyrrole-derived carbon nanoparticles[J]. Carbon, 2023,201:1126-1136. doi: 10.1016/j.carbon.2022.10.036

    20. [20]

      Shaji N, Ho C W, Nanthagopal M, Santhoshkumar P, Sim G S, Lee C W. Biowaste‑derived heteroatoms-doped carbon for sustainable sodium-ion storage[J]. J. Alloy. Compd., 2021,872159670. doi: 10.1016/j.jallcom.2021.159670

    21. [21]

      Guo D, Ding B, Hu X, Wang Y H, Han F Q, Wu X L. Synthesis of boron and nitrogen codoped porous carbon foam for high performance supercapacitors[J]. ACS Sustain. Chem. Eng., 2018,6(9):11441-11449. doi: 10.1021/acssuschemeng.8b01435

    22. [22]

      Long B, Ma J F, Song T, Wang X Y, Tong Y X. Tailoring superficial morphology, defect and functional group of commercial carbon cloth for a flexible, stable and high-capacity anode in sodium ion battery[J]. Electrochim. Acta, 2021,374137934. doi: 10.1016/j.electacta.2021.137934

    23. [23]

      Zhou M, Pu F, Wang Z, Guan S Y. Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors[J]. Carbon, 2014,68:185-194. doi: 10.1016/j.carbon.2013.10.079

    24. [24]

      Deng X, Zhao B T, Zhu L, Shao Z P. Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors[J]. Carbon, 2015,93:48-58. doi: 10.1016/j.carbon.2015.05.031

    25. [25]

      Chen C, Huang Y, Zhu Y D, Zhang Z, Guang Z X, Meng Z Y, Liu P B. Nonignorable influence of oxygen in hard carbon for sodium ion storage[J]. ACS Sustain. Chem. Eng., 2020,8(3):1497-1506. doi: 10.1021/acssuschemeng.9b05948

    26. [26]

      Matsoso B J, Ranganathan K, Mutuma B K, Lerotholi T, Jones G. Time-dependent evolution of the nitrogen configurations in N-doped graphene films[J]. RSC Adv., 2016,6(108):106914-106920. doi: 10.1039/C6RA24094A

    27. [27]

      Chen C, Yu D F, Zhao G Y, Du B S, Tang W, Sun L, Sun Y, Besenbacher F, Yu M. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors[J]. Nano Energy, 2016,27:377-389. doi: 10.1016/j.nanoen.2016.07.020

    28. [28]

      Zhou Q X, Su Z B, Tang Y D, Ai L, Fu G T, Wu Z X, Sun D M, Tang Y W. Pt-like oxygen reduction activity induced by cost-effective MnFeO2/N-carbon[J]. Chem.-Eur. J., 2019,25(24):6226-6232. doi: 10.1002/chem.201900638

    29. [29]

      ZHENG S J, LI J X, ZHONG W S, JIANG W, HU G S. Preparation and electrochemical performance for supercapacitors of chitosan-based porous carbon materials[J]. Chinese J. Inorg. Chem., 2023,39(3):492-500.  

    30. [30]

      Chen C, Huang Y, Meng Z Y, Zhang J X, Lu M W, Liu P B, Li T H. Insight into the rapid sodium storage mechanism of the fiber-like oxygen-doped hierarchical porous biomass derived hard carbon[J]. J. Colloid Interface Sci., 2021,588:657-669. doi: 10.1016/j.jcis.2020.11.058

    31. [31]

      Wang Z H, Yang H Y, Liu Y R, Bai Y, Chen G H, Li Y, Wang X R, Xu H J, Wu C, Lu J. Analysis of the stable interphase responsible for the excellent electrochemical performance of graphite electrodes in sodium-ion batteries[J]. Small, 2020,16(51)2003268. doi: 10.1002/smll.202003268

    32. [32]

      Eshetu G G, Diemant T, Hekmatfar M, Grugeon S, Behm R J, Laruelle S, Armand M, Passerini S. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries[J]. Nano Energy, 2019,55:327-340. doi: 10.1016/j.nanoen.2018.10.040

    33. [33]

      Yang C H, Xiong J W, Ou X, Wu C F, Xiong X H, Wang J H, Huang K, Liu M L. A renewable natural cotton derived and nitrogen/sulfur Co-doped carbon as a high-performance sodium ion battery anode[J]. Mater. Today Energy, 2018,8:37-44. doi: 10.1016/j.mtener.2018.02.001

    34. [34]

      Sathiya M, Prakash A S, Ramesha K, Tarascon J M, Shukla A K. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage[J]. J. Am. Chem. Soc., 2011,133(40):16291-16299. doi: 10.1021/ja207285b

    35. [35]

      Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abruña H D, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat. Mater., 2013,12(6):518-522. doi: 10.1038/nmat3601

    36. [36]

      Li S, Qiu J X, Lai C, Ling M, Zhao H J, Zhang S Q. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries[J]. Nano Energy, 2015,12:224-230. doi: 10.1016/j.nanoen.2014.12.032

    37. [37]

      Chen C, Huang Y, Meng Z Y, Lu M W, Xu Z P, Liu P B, Li T H. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage[J]. J. Mater. Sci. Technol., 2021,76:11-19. doi: 10.1016/j.jmst.2020.11.014

    38. [38]

      Pu X J, Zhao D, Fu C L, Chen Z X, Cao S N, Wang C S, Cao Y L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves[J]. Angew. Chem. Int. Ed., 2021,6(39):21310-21318.

    39. [39]

      Chen M Z, Chen L N, Hu Z, Liu Q N, Zhang B W, Hu Y X, Gu Q F, Wang J L, Wang L Z, Guo X D, Chou S L, Dou S X. Carbon-coated Na3.32Fe2.34(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries[J]. Adv. Mater., 2017,29(21)1605535. doi: 10.1002/adma.201605535

    40. [40]

      Ma X D, Wu X H, Shen P K. Rational design of Na4Fe3(PO4)2(P2O7) nanoparticles embedded in graphene: Toward fast sodium storage through the pseudocapacitive effect[J]. ACS Appl. Energy Mater., 2018,1(11):6268-6278. doi: 10.1021/acsaem.8b01275

    41. [41]

      Li C, Fu Q, Zhao K J, Wang Y P, Tang H, Li H H, Jiang H B, Chen L. Nitrogen and phosphorous dual-doped graphene aerogel with rapid capacitive response for sodium-ion batteries[J]. Carbon, 2018,139:1117-1125. doi: 10.1016/j.carbon.2018.06.035

    42. [42]

      Li D D, Ye C, Chen X Z, Wang S Q, Wang H H. A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode[J]. J. Power Sources, 2018,382:116-121. doi: 10.1016/j.jpowsour.2018.02.036

    43. [43]

      Yu K H, Wang X R, Yang H Y, Bai Y, Wu C. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries[J]. J. Energy Chem., 2021,55:499-508. doi: 10.1016/j.jechem.2020.07.025

    44. [44]

      Gao L, Wang Z J, Zhang L L, Yang X L. Potassium ion anode versus sodium ion anode: Potato starch residue derived carbon material as a case study[J]. J. Solid State Electrochem., 2022,26(2):343-352. doi: 10.1007/s10008-021-05052-3

    45. [45]

      Wang X T, Yang Y, Guo J Z, Gu Z Y, Ang E H, Sun Z H, Li W H, Liang H J, Wu X L. An advanced cathode composite for co-utilization of cations and anions in lithium batteries[J]. J. Mater. Sci. Technol., 2022,102:72-79. doi: 10.1016/j.jmst.2021.05.074

    46. [46]

      Guo J Z, Zhang H X, Gu Z Y, Du M, Lü H Y, Zhao X X, Yang J L, Li W H, Kang S, Zou W, Wu X L. Heterogeneous NASICON-type composite as low-cost, high-performance cathode for sodium-ion batteries[J]. Adv. Funct. Mater., 2022,32(52)2209482. doi: 10.1002/adfm.202209482

  • 加载中
    1. [1]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    2. [2]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    3. [3]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    6. [6]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    7. [7]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    8. [8]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    9. [9]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    10. [10]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    11. [11]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    12. [12]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    13. [13]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    14. [14]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    15. [15]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    16. [16]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    17. [17]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    18. [18]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    19. [19]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    20. [20]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

Metrics
  • PDF Downloads(0)
  • Abstract views(608)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return