Citation: Chen-Wei ZHU, Yi-Nuo JIN, Chun-Hong ZHANG, Heng-Hui CHEN, Shao-Tian CHEN, Yu-Ming FU, Yun-Jia WU, Wei-Hai SUN. High-performance and stable perovskite solar cells prepared with a green bi-solvent method[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1061-1071. doi: 10.11862/CJIC.2023.084 shu

High-performance and stable perovskite solar cells prepared with a green bi-solvent method

  • Corresponding author: Wei-Hai SUN, sunweihai@hqu.edu.cn
  • Received Date: 23 December 2022
    Revised Date: 4 May 2023

Figures(7)

  • To simplify the fabrication procedures and improve the film quality, herein we used a bi-solvent system containing water and ethylene glycol methyl ether (EGME), which is less toxic and environmentally friendly. The bi-solvent (Volume ratio: 1:1) can dissolve CsBr and improve the solubility of CsBr, decreasing rapidly the spinning times of CsBr methanol solution and streamlining immensely multistep processes into a classical two-step methodology. The results from scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns verify the formation of a compact, homogeneous, and uniform CsPbBr3 film by the bi-solvent system. Based on this bi-solvent system, the ideal parameters during the film deposition were also discovered. In addition, we notice that the CsPbBr3 film still existed in some large-size random phases, which can be deducted as the excessive CsPb2Br5 phase through XRD patterns. For further perfection, we explore the influence of CsBr methanol solution spinning times right after the modified two-step process. The subsequently-spinning CsBr can act as a surface modifier to diminish the undesired impurity, thus enhancing the film quality and the efficiency of as-constructed CsPbBr3-based perovskite solar cells (PSCs). As a result, CsPbBr3-based PSCs, prepared by spinning coating one time with a water/EGME solution and two times with the methanol solution of CsBr, had the optimal performance. It can reach open-circuit voltage (VOC), short circuit current density (JSC), fill factor (FF) of 1.44 V, 6.26 mA·cm-2, 74.57%, and the ultimate photoelectric conversion efficiency (PCE) attained 6.72%.
  • 加载中
    1. [1]

      Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051. doi: 10.1021/ja809598r

    2. [2]

      NREL. Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html.

    3. [3]

      Akkerman Q A, Manna L. What defines a halide perovskite?[J]. ACS Energy Lett., 2020,5(2):604-610. doi: 10.1021/acsenergylett.0c00039

    4. [4]

      Xu L, Wu D, Lv W X, Xiang Y, Liu Y, Tao Y, Yin J, Qian M Y, Li P, Zhang L Q, Chen S F, Mohammed O F, Bakr O M, Duan Z, Chen R F, Huang W. Resonance-mediated dynamic modulation of perovskite crystallization for efficient and stable solar cells[J]. Adv. Mater., 2021,34(6)2107111.  

    5. [5]

      ZOU Y, LI Z, CHEN H H, LIU Y C, TONG A L, YAN H Y, HE R W, HUA G X, ZENG W D, SUN W H. Effect of NaTFSI interface modification on flat TiO2-based perovskite solar cells[J]. Chin. J. Lumin., 2021,42(5):682-690. doi: 10.37188/CJL.20210045

    6. [6]

      Shaw B K, Castillo-Blas C, Thorne M F, Ríos Gómez M L, Forrest T, Lopez M D, Chater P A, McHugh L N, Keen D A, Bennett T D. Principles of melting in hybrid organic-inorganic perovskite and polymorphic ABX3 structures[J]. Chem. Sci., 2022,13(7):2033-2042. doi: 10.1039/D1SC07080K

    7. [7]

      Li N X, Tao S X, Chen Y H, Niu X X, Onwudinanti C K, Hu C, Qiu Z W, Xu Z Q, Zheng G H, Wang L G, Zhang Y, Li L, Liu H F, Lun Y Z, Hong J W, Wang X Y, Liu Y Q, Xie H P, Gao Y L, Bai Y, Yang S H, Brocks G, Chen Q, Zhou H P. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells[J]. Nat Energy, 2019,4(5):408-415. doi: 10.1038/s41560-019-0382-6

    8. [8]

      Bai S, Da P M, Li C, Wang Z P, Yuan Z C, Fu F, Kawecki M, Liu X J, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J. Planar perovskite solar cells with long-term stability using ionic liquid additives[J]. Nature, 2019,571(7764):245-250. doi: 10.1038/s41586-019-1357-2

    9. [9]

      Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015,517(7535):476-480. doi: 10.1038/nature14133

    10. [10]

      Shao Y C, Wang Q, Dong Q F, Yuan Y B, Huang J S. Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells[J]. Nano Energy, 2015,16:47-53. doi: 10.1016/j.nanoen.2015.06.010

    11. [11]

      Kumar N, Rani N J, Kurchania R. Advancement in CsPbBr3 inorganic perovskite solar cells: Fabrication, efficiency and stability[J]. Sol. Energy, 2021,221:197-205. doi: 10.1016/j.solener.2021.04.042

    12. [12]

      Li B, Fu L, Li S, Li H, Pan L, Wang L, Chang B H, Yin L W. Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies[J]. J. Mater. Chem. A, 2019,7(36):20494-20518. doi: 10.1039/C9TA04114A

    13. [13]

      Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W. Tailored lattice "tape" to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V[J]. Adv. Sci., 2021,8(19)2101418. doi: 10.1002/advs.202101418

    14. [14]

      Kieslich G, Sun S J, Cheetham A K. Solid-state principles applied to organic-inorganic perovskites: New tricks for an old dog[J]. Chem. Sci., 2014,5(12):4712-4715. doi: 10.1039/C4SC02211D

    15. [15]

      Gao P, Grätzel M, Nazeeruddin M K. Organohalide lead perovskites for photovoltaic applications[J]. Energy Environ. Sci., 2014,7(8):2448-2463. doi: 10.1039/C4EE00942H

    16. [16]

      Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells[J]. J. Phys. Chem. Lett., 2015,6(13):2452-2456. doi: 10.1021/acs.jpclett.5b00968

    17. [17]

      Chen J L, Qiu W, Huang C Y, Wu L, Liu C, Tian Q Q, Peng Z Y, Chen J. A novel solvent for multistep solution-processed planar CsPbBr3 perovskite solar cells using In2S3 as electron transport layer[J]. Energy Technol., 2022,10(6)2200054. doi: 10.1002/ente.202200054

    18. [18]

      Cao X B, Zhang G S, Cai Y F, Jiang L, Yang W J, Song W D, He X, Zeng Q G, Jia Y, Wei J Q. A sustainable solvent system for processing CsPbBr3 films for solar cells via an anomalous sequential deposition route[J]. Green Chem., 2021,23(1):470-478. doi: 10.1039/D0GC02892D

    19. [19]

      Liu X Y, Tan X H, Liu Z Y, Ye H B, Sun B, Shi T L, Tang Z R, Liao G L. Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering[J]. Nano Energy, 2019,56:184-195. doi: 10.1016/j.nanoen.2018.11.053

    20. [20]

      Cao X B, Zhang G S, Cai Y F, Jiang L, He X, Zeng Q G, Wei J Q, Jia Y, Xing G C, Huang W. All green solvents for fabrication of CsPbBr3 films for efficient solar cells guided by the hansen solubility theory[J]. Sol. RRL, 2020,4(4)2000008. doi: 10.1002/solr.202000008

    21. [21]

      HAN L H, JIN J X, ZAI X R, YANG S L. Control of nano-SnO2 powder agglomeration[J]. Development and Application of Materials, 2005(6):30-33. doi: 10.3969/j.issn.1003-1545.2005.06.009

    22. [22]

      Zhu J W, He B L, Yao X P, Chen H Y, Duan Y Y, Duan J L, Tang Q W. Phase control of Cs-Pb-Br derivatives to suppress 0D Cs4PbB6 for high-efficiency and stable all-inorganic CsPbBr3 perovskite solar cells[J]. Small, 2022,18(8)2106323. doi: 10.1002/smll.202106323

    23. [23]

      Duan J L, Zhao Y Y, He B L, Tang Q W. High-purity inorganic perovskite films for solar cells with 9.72 % efficiency[J]. Angew. Chem. Int. Ed., 2018,130(14):3849-3853. doi: 10.1002/ange.201800019

    24. [24]

      Li H, Tong G Q, Chen T T, Zhu H W, Li G P, Chang Y J, Wang L, Jiang Y. Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr3 solar cells[J]. J. Mater. Chem. A, 2018,6(29):14255-14261. doi: 10.1039/C8TA03811B

    25. [25]

      Tong G Q, Ono L K, Qi Y B. Recent progress of all-bromide inorganic perovskite solar cells[J]. Energy Technol., 2020,8(4)1900961. doi: 10.1002/ente.201900961

    26. [26]

      Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F, Bakr O M. Pure Cs4PbBr6: Highly luminescent zero-dimensional perovskite solids[J]. ACS Energy Lett., 2016,1(4):840-845. doi: 10.1021/acsenergylett.6b00396

    27. [27]

      Wang S B, Cao F X, Sun W H, Wang C Y, Yan Z G, Wang N, Lan Z, Wu J H. A green bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells[J]. Mater. Today Phys., 2022,22100614. doi: 10.1016/j.mtphys.2022.100614

    28. [28]

      Zhang W Y, Liu X J, He B L, Gong Z K, Zhu J W, Ding Y, Chen H Y, Tang Q W. Interface engineering of imidazolium ionic liquids toward efficient and stable CsPbBr3 perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2020,12(4):4540-4548. doi: 10.1021/acsami.9b20831

    29. [29]

      Zhang X L, Xu B, Zhang J B, Gao Y, Zheng Y J, Wang K, Sun X W. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites[J]. Adv. Funct. Mater., 2016,26(25):4595-4600. doi: 10.1002/adfm.201600958

    30. [30]

      Teng P P, Han X P, Li J W, Xu Y, Kang L, Wang Y R, Yang Y, Yu T. Elegant face-down liquid-space-restricted deposition of CsPbBr3 films for efficient carbon-based all-inorganic planar perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2018,10(11):9541-9546. doi: 10.1021/acsami.8b00358

    31. [31]

      Wang K, Shi Y T, Gao L G, Chi R H, Shi K, Guo B Y, Zhao L, Ma T L. W(Nb)Ox-based efficient flexible perovskite solar cells: from material optimization to working principle[J]. Nano Energy, 2017,31:424-431. doi: 10.1016/j.nanoen.2016.11.054

    32. [32]

      Ding Y, He B L, Zhu J W, Zhang W Y, Su G D, Duan J L, Zhao Y Y, Chen H Y, Tang Q W. Advanced modification of perovskite surfaces for defect passivation and efficient charge extraction in air-stable CsPbBr3 perovskite solar cells[J]. ACS Sustain. Chem. Eng., 2019,7(23):19286-19294. doi: 10.1021/acssuschemeng.9b05631

    33. [33]

      Liang K B, Wu Y J, Zhen Q S, Zou Y, Zhang X C, Wang C H, Shi P Y, Zhang Y Y, Sun W H, Li Y L, Wu J H. Solvent vapor annealing-assisted mesoporous PbBr2 frameworks for high-performance inorganic CsPbBr3 perovskite solar cells[J]. Surf. Interfaces, 2023,37102707. doi: 10.1016/j.surfin.2023.102707

    34. [34]

      Tong A L, Zhu C W, Yan H Y, Zhang C H, Jin Y N, Wu Y J, Cao F X, Wu J H, Sun W H. Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation[J]. J. Alloy. Compd., 2023,942169084. doi: 10.1016/j.jallcom.2023.169084

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    9. [9]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

Metrics
  • PDF Downloads(3)
  • Abstract views(970)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return