Citation: Chen-Wei ZHU, Yi-Nuo JIN, Chun-Hong ZHANG, Heng-Hui CHEN, Shao-Tian CHEN, Yu-Ming FU, Yun-Jia WU, Wei-Hai SUN. High-performance and stable perovskite solar cells prepared with a green bi-solvent method[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1061-1071. doi: 10.11862/CJIC.2023.084 shu

High-performance and stable perovskite solar cells prepared with a green bi-solvent method

  • Corresponding author: Wei-Hai SUN, sunweihai@hqu.edu.cn
  • Received Date: 23 December 2022
    Revised Date: 4 May 2023

Figures(7)

  • To simplify the fabrication procedures and improve the film quality, herein we used a bi-solvent system containing water and ethylene glycol methyl ether (EGME), which is less toxic and environmentally friendly. The bi-solvent (Volume ratio: 1:1) can dissolve CsBr and improve the solubility of CsBr, decreasing rapidly the spinning times of CsBr methanol solution and streamlining immensely multistep processes into a classical two-step methodology. The results from scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns verify the formation of a compact, homogeneous, and uniform CsPbBr3 film by the bi-solvent system. Based on this bi-solvent system, the ideal parameters during the film deposition were also discovered. In addition, we notice that the CsPbBr3 film still existed in some large-size random phases, which can be deducted as the excessive CsPb2Br5 phase through XRD patterns. For further perfection, we explore the influence of CsBr methanol solution spinning times right after the modified two-step process. The subsequently-spinning CsBr can act as a surface modifier to diminish the undesired impurity, thus enhancing the film quality and the efficiency of as-constructed CsPbBr3-based perovskite solar cells (PSCs). As a result, CsPbBr3-based PSCs, prepared by spinning coating one time with a water/EGME solution and two times with the methanol solution of CsBr, had the optimal performance. It can reach open-circuit voltage (VOC), short circuit current density (JSC), fill factor (FF) of 1.44 V, 6.26 mA·cm-2, 74.57%, and the ultimate photoelectric conversion efficiency (PCE) attained 6.72%.
  • 加载中
    1. [1]

      Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051. doi: 10.1021/ja809598r

    2. [2]

      NREL. Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html.

    3. [3]

      Akkerman Q A, Manna L. What defines a halide perovskite?[J]. ACS Energy Lett., 2020,5(2):604-610. doi: 10.1021/acsenergylett.0c00039

    4. [4]

      Xu L, Wu D, Lv W X, Xiang Y, Liu Y, Tao Y, Yin J, Qian M Y, Li P, Zhang L Q, Chen S F, Mohammed O F, Bakr O M, Duan Z, Chen R F, Huang W. Resonance-mediated dynamic modulation of perovskite crystallization for efficient and stable solar cells[J]. Adv. Mater., 2021,34(6)2107111.  

    5. [5]

      ZOU Y, LI Z, CHEN H H, LIU Y C, TONG A L, YAN H Y, HE R W, HUA G X, ZENG W D, SUN W H. Effect of NaTFSI interface modification on flat TiO2-based perovskite solar cells[J]. Chin. J. Lumin., 2021,42(5):682-690. doi: 10.37188/CJL.20210045

    6. [6]

      Shaw B K, Castillo-Blas C, Thorne M F, Ríos Gómez M L, Forrest T, Lopez M D, Chater P A, McHugh L N, Keen D A, Bennett T D. Principles of melting in hybrid organic-inorganic perovskite and polymorphic ABX3 structures[J]. Chem. Sci., 2022,13(7):2033-2042. doi: 10.1039/D1SC07080K

    7. [7]

      Li N X, Tao S X, Chen Y H, Niu X X, Onwudinanti C K, Hu C, Qiu Z W, Xu Z Q, Zheng G H, Wang L G, Zhang Y, Li L, Liu H F, Lun Y Z, Hong J W, Wang X Y, Liu Y Q, Xie H P, Gao Y L, Bai Y, Yang S H, Brocks G, Chen Q, Zhou H P. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells[J]. Nat Energy, 2019,4(5):408-415. doi: 10.1038/s41560-019-0382-6

    8. [8]

      Bai S, Da P M, Li C, Wang Z P, Yuan Z C, Fu F, Kawecki M, Liu X J, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J. Planar perovskite solar cells with long-term stability using ionic liquid additives[J]. Nature, 2019,571(7764):245-250. doi: 10.1038/s41586-019-1357-2

    9. [9]

      Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015,517(7535):476-480. doi: 10.1038/nature14133

    10. [10]

      Shao Y C, Wang Q, Dong Q F, Yuan Y B, Huang J S. Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells[J]. Nano Energy, 2015,16:47-53. doi: 10.1016/j.nanoen.2015.06.010

    11. [11]

      Kumar N, Rani N J, Kurchania R. Advancement in CsPbBr3 inorganic perovskite solar cells: Fabrication, efficiency and stability[J]. Sol. Energy, 2021,221:197-205. doi: 10.1016/j.solener.2021.04.042

    12. [12]

      Li B, Fu L, Li S, Li H, Pan L, Wang L, Chang B H, Yin L W. Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies[J]. J. Mater. Chem. A, 2019,7(36):20494-20518. doi: 10.1039/C9TA04114A

    13. [13]

      Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W. Tailored lattice "tape" to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V[J]. Adv. Sci., 2021,8(19)2101418. doi: 10.1002/advs.202101418

    14. [14]

      Kieslich G, Sun S J, Cheetham A K. Solid-state principles applied to organic-inorganic perovskites: New tricks for an old dog[J]. Chem. Sci., 2014,5(12):4712-4715. doi: 10.1039/C4SC02211D

    15. [15]

      Gao P, Grätzel M, Nazeeruddin M K. Organohalide lead perovskites for photovoltaic applications[J]. Energy Environ. Sci., 2014,7(8):2448-2463. doi: 10.1039/C4EE00942H

    16. [16]

      Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells[J]. J. Phys. Chem. Lett., 2015,6(13):2452-2456. doi: 10.1021/acs.jpclett.5b00968

    17. [17]

      Chen J L, Qiu W, Huang C Y, Wu L, Liu C, Tian Q Q, Peng Z Y, Chen J. A novel solvent for multistep solution-processed planar CsPbBr3 perovskite solar cells using In2S3 as electron transport layer[J]. Energy Technol., 2022,10(6)2200054. doi: 10.1002/ente.202200054

    18. [18]

      Cao X B, Zhang G S, Cai Y F, Jiang L, Yang W J, Song W D, He X, Zeng Q G, Jia Y, Wei J Q. A sustainable solvent system for processing CsPbBr3 films for solar cells via an anomalous sequential deposition route[J]. Green Chem., 2021,23(1):470-478. doi: 10.1039/D0GC02892D

    19. [19]

      Liu X Y, Tan X H, Liu Z Y, Ye H B, Sun B, Shi T L, Tang Z R, Liao G L. Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering[J]. Nano Energy, 2019,56:184-195. doi: 10.1016/j.nanoen.2018.11.053

    20. [20]

      Cao X B, Zhang G S, Cai Y F, Jiang L, He X, Zeng Q G, Wei J Q, Jia Y, Xing G C, Huang W. All green solvents for fabrication of CsPbBr3 films for efficient solar cells guided by the hansen solubility theory[J]. Sol. RRL, 2020,4(4)2000008. doi: 10.1002/solr.202000008

    21. [21]

      HAN L H, JIN J X, ZAI X R, YANG S L. Control of nano-SnO2 powder agglomeration[J]. Development and Application of Materials, 2005(6):30-33. doi: 10.3969/j.issn.1003-1545.2005.06.009

    22. [22]

      Zhu J W, He B L, Yao X P, Chen H Y, Duan Y Y, Duan J L, Tang Q W. Phase control of Cs-Pb-Br derivatives to suppress 0D Cs4PbB6 for high-efficiency and stable all-inorganic CsPbBr3 perovskite solar cells[J]. Small, 2022,18(8)2106323. doi: 10.1002/smll.202106323

    23. [23]

      Duan J L, Zhao Y Y, He B L, Tang Q W. High-purity inorganic perovskite films for solar cells with 9.72 % efficiency[J]. Angew. Chem. Int. Ed., 2018,130(14):3849-3853. doi: 10.1002/ange.201800019

    24. [24]

      Li H, Tong G Q, Chen T T, Zhu H W, Li G P, Chang Y J, Wang L, Jiang Y. Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr3 solar cells[J]. J. Mater. Chem. A, 2018,6(29):14255-14261. doi: 10.1039/C8TA03811B

    25. [25]

      Tong G Q, Ono L K, Qi Y B. Recent progress of all-bromide inorganic perovskite solar cells[J]. Energy Technol., 2020,8(4)1900961. doi: 10.1002/ente.201900961

    26. [26]

      Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F, Bakr O M. Pure Cs4PbBr6: Highly luminescent zero-dimensional perovskite solids[J]. ACS Energy Lett., 2016,1(4):840-845. doi: 10.1021/acsenergylett.6b00396

    27. [27]

      Wang S B, Cao F X, Sun W H, Wang C Y, Yan Z G, Wang N, Lan Z, Wu J H. A green bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells[J]. Mater. Today Phys., 2022,22100614. doi: 10.1016/j.mtphys.2022.100614

    28. [28]

      Zhang W Y, Liu X J, He B L, Gong Z K, Zhu J W, Ding Y, Chen H Y, Tang Q W. Interface engineering of imidazolium ionic liquids toward efficient and stable CsPbBr3 perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2020,12(4):4540-4548. doi: 10.1021/acsami.9b20831

    29. [29]

      Zhang X L, Xu B, Zhang J B, Gao Y, Zheng Y J, Wang K, Sun X W. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites[J]. Adv. Funct. Mater., 2016,26(25):4595-4600. doi: 10.1002/adfm.201600958

    30. [30]

      Teng P P, Han X P, Li J W, Xu Y, Kang L, Wang Y R, Yang Y, Yu T. Elegant face-down liquid-space-restricted deposition of CsPbBr3 films for efficient carbon-based all-inorganic planar perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2018,10(11):9541-9546. doi: 10.1021/acsami.8b00358

    31. [31]

      Wang K, Shi Y T, Gao L G, Chi R H, Shi K, Guo B Y, Zhao L, Ma T L. W(Nb)Ox-based efficient flexible perovskite solar cells: from material optimization to working principle[J]. Nano Energy, 2017,31:424-431. doi: 10.1016/j.nanoen.2016.11.054

    32. [32]

      Ding Y, He B L, Zhu J W, Zhang W Y, Su G D, Duan J L, Zhao Y Y, Chen H Y, Tang Q W. Advanced modification of perovskite surfaces for defect passivation and efficient charge extraction in air-stable CsPbBr3 perovskite solar cells[J]. ACS Sustain. Chem. Eng., 2019,7(23):19286-19294. doi: 10.1021/acssuschemeng.9b05631

    33. [33]

      Liang K B, Wu Y J, Zhen Q S, Zou Y, Zhang X C, Wang C H, Shi P Y, Zhang Y Y, Sun W H, Li Y L, Wu J H. Solvent vapor annealing-assisted mesoporous PbBr2 frameworks for high-performance inorganic CsPbBr3 perovskite solar cells[J]. Surf. Interfaces, 2023,37102707. doi: 10.1016/j.surfin.2023.102707

    34. [34]

      Tong A L, Zhu C W, Yan H Y, Zhang C H, Jin Y N, Wu Y J, Cao F X, Wu J H, Sun W H. Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation[J]. J. Alloy. Compd., 2023,942169084. doi: 10.1016/j.jallcom.2023.169084

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    8. [8]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    19. [19]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(3)
  • Abstract views(1197)
  • HTML views(167)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return