High-performance and stable perovskite solar cells prepared with a green bi-solvent method
- Corresponding author: Wei-Hai SUN, sunweihai@hqu.edu.cn
Citation: Chen-Wei ZHU, Yi-Nuo JIN, Chun-Hong ZHANG, Heng-Hui CHEN, Shao-Tian CHEN, Yu-Ming FU, Yun-Jia WU, Wei-Hai SUN. High-performance and stable perovskite solar cells prepared with a green bi-solvent method[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1061-1071. doi: 10.11862/CJIC.2023.084
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051. doi: 10.1021/ja809598r
NREL. Best research-cell efficiency chart.
Akkerman Q A, Manna L. What defines a halide perovskite?[J]. ACS Energy Lett., 2020,5(2):604-610. doi: 10.1021/acsenergylett.0c00039
Xu L, Wu D, Lv W X, Xiang Y, Liu Y, Tao Y, Yin J, Qian M Y, Li P, Zhang L Q, Chen S F, Mohammed O F, Bakr O M, Duan Z, Chen R F, Huang W. Resonance-mediated dynamic modulation of perovskite crystallization for efficient and stable solar cells[J]. Adv. Mater., 2021,34(6)2107111.
ZOU Y, LI Z, CHEN H H, LIU Y C, TONG A L, YAN H Y, HE R W, HUA G X, ZENG W D, SUN W H. Effect of NaTFSI interface modification on flat TiO2-based perovskite solar cells[J]. Chin. J. Lumin., 2021,42(5):682-690. doi: 10.37188/CJL.20210045
Shaw B K, Castillo-Blas C, Thorne M F, Ríos Gómez M L, Forrest T, Lopez M D, Chater P A, McHugh L N, Keen D A, Bennett T D. Principles of melting in hybrid organic-inorganic perovskite and polymorphic ABX3 structures[J]. Chem. Sci., 2022,13(7):2033-2042. doi: 10.1039/D1SC07080K
Li N X, Tao S X, Chen Y H, Niu X X, Onwudinanti C K, Hu C, Qiu Z W, Xu Z Q, Zheng G H, Wang L G, Zhang Y, Li L, Liu H F, Lun Y Z, Hong J W, Wang X Y, Liu Y Q, Xie H P, Gao Y L, Bai Y, Yang S H, Brocks G, Chen Q, Zhou H P. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells[J]. Nat Energy, 2019,4(5):408-415. doi: 10.1038/s41560-019-0382-6
Bai S, Da P M, Li C, Wang Z P, Yuan Z C, Fu F, Kawecki M, Liu X J, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J. Planar perovskite solar cells with long-term stability using ionic liquid additives[J]. Nature, 2019,571(7764):245-250. doi: 10.1038/s41586-019-1357-2
Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015,517(7535):476-480. doi: 10.1038/nature14133
Shao Y C, Wang Q, Dong Q F, Yuan Y B, Huang J S. Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells[J]. Nano Energy, 2015,16:47-53. doi: 10.1016/j.nanoen.2015.06.010
Kumar N, Rani N J, Kurchania R. Advancement in CsPbBr3 inorganic perovskite solar cells: Fabrication, efficiency and stability[J]. Sol. Energy, 2021,221:197-205. doi: 10.1016/j.solener.2021.04.042
Li B, Fu L, Li S, Li H, Pan L, Wang L, Chang B H, Yin L W. Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies[J]. J. Mater. Chem. A, 2019,7(36):20494-20518. doi: 10.1039/C9TA04114A
Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W. Tailored lattice "tape" to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V[J]. Adv. Sci., 2021,8(19)2101418. doi: 10.1002/advs.202101418
Kieslich G, Sun S J, Cheetham A K. Solid-state principles applied to organic-inorganic perovskites: New tricks for an old dog[J]. Chem. Sci., 2014,5(12):4712-4715. doi: 10.1039/C4SC02211D
Gao P, Grätzel M, Nazeeruddin M K. Organohalide lead perovskites for photovoltaic applications[J]. Energy Environ. Sci., 2014,7(8):2448-2463. doi: 10.1039/C4EE00942H
Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells[J]. J. Phys. Chem. Lett., 2015,6(13):2452-2456. doi: 10.1021/acs.jpclett.5b00968
Chen J L, Qiu W, Huang C Y, Wu L, Liu C, Tian Q Q, Peng Z Y, Chen J. A novel solvent for multistep solution-processed planar CsPbBr3 perovskite solar cells using In2S3 as electron transport layer[J]. Energy Technol., 2022,10(6)2200054. doi: 10.1002/ente.202200054
Cao X B, Zhang G S, Cai Y F, Jiang L, Yang W J, Song W D, He X, Zeng Q G, Jia Y, Wei J Q. A sustainable solvent system for processing CsPbBr3 films for solar cells via an anomalous sequential deposition route[J]. Green Chem., 2021,23(1):470-478. doi: 10.1039/D0GC02892D
Liu X Y, Tan X H, Liu Z Y, Ye H B, Sun B, Shi T L, Tang Z R, Liao G L. Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering[J]. Nano Energy, 2019,56:184-195. doi: 10.1016/j.nanoen.2018.11.053
Cao X B, Zhang G S, Cai Y F, Jiang L, He X, Zeng Q G, Wei J Q, Jia Y, Xing G C, Huang W. All green solvents for fabrication of CsPbBr3 films for efficient solar cells guided by the hansen solubility theory[J]. Sol. RRL, 2020,4(4)2000008. doi: 10.1002/solr.202000008
HAN L H, JIN J X, ZAI X R, YANG S L. Control of nano-SnO2 powder agglomeration[J]. Development and Application of Materials, 2005(6):30-33. doi: 10.3969/j.issn.1003-1545.2005.06.009
Zhu J W, He B L, Yao X P, Chen H Y, Duan Y Y, Duan J L, Tang Q W. Phase control of Cs-Pb-Br derivatives to suppress 0D Cs4PbB6 for high-efficiency and stable all-inorganic CsPbBr3 perovskite solar cells[J]. Small, 2022,18(8)2106323. doi: 10.1002/smll.202106323
Duan J L, Zhao Y Y, He B L, Tang Q W. High-purity inorganic perovskite films for solar cells with 9.72 % efficiency[J]. Angew. Chem. Int. Ed., 2018,130(14):3849-3853. doi: 10.1002/ange.201800019
Li H, Tong G Q, Chen T T, Zhu H W, Li G P, Chang Y J, Wang L, Jiang Y. Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr3 solar cells[J]. J. Mater. Chem. A, 2018,6(29):14255-14261. doi: 10.1039/C8TA03811B
Tong G Q, Ono L K, Qi Y B. Recent progress of all-bromide inorganic perovskite solar cells[J]. Energy Technol., 2020,8(4)1900961. doi: 10.1002/ente.201900961
Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F, Bakr O M. Pure Cs4PbBr6: Highly luminescent zero-dimensional perovskite solids[J]. ACS Energy Lett., 2016,1(4):840-845. doi: 10.1021/acsenergylett.6b00396
Wang S B, Cao F X, Sun W H, Wang C Y, Yan Z G, Wang N, Lan Z, Wu J H. A green bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells[J]. Mater. Today Phys., 2022,22100614. doi: 10.1016/j.mtphys.2022.100614
Zhang W Y, Liu X J, He B L, Gong Z K, Zhu J W, Ding Y, Chen H Y, Tang Q W. Interface engineering of imidazolium ionic liquids toward efficient and stable CsPbBr3 perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2020,12(4):4540-4548. doi: 10.1021/acsami.9b20831
Zhang X L, Xu B, Zhang J B, Gao Y, Zheng Y J, Wang K, Sun X W. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites[J]. Adv. Funct. Mater., 2016,26(25):4595-4600. doi: 10.1002/adfm.201600958
Teng P P, Han X P, Li J W, Xu Y, Kang L, Wang Y R, Yang Y, Yu T. Elegant face-down liquid-space-restricted deposition of CsPbBr3 films for efficient carbon-based all-inorganic planar perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2018,10(11):9541-9546. doi: 10.1021/acsami.8b00358
Wang K, Shi Y T, Gao L G, Chi R H, Shi K, Guo B Y, Zhao L, Ma T L. W(Nb)Ox-based efficient flexible perovskite solar cells: from material optimization to working principle[J]. Nano Energy, 2017,31:424-431. doi: 10.1016/j.nanoen.2016.11.054
Ding Y, He B L, Zhu J W, Zhang W Y, Su G D, Duan J L, Zhao Y Y, Chen H Y, Tang Q W. Advanced modification of perovskite surfaces for defect passivation and efficient charge extraction in air-stable CsPbBr3 perovskite solar cells[J]. ACS Sustain. Chem. Eng., 2019,7(23):19286-19294. doi: 10.1021/acssuschemeng.9b05631
Liang K B, Wu Y J, Zhen Q S, Zou Y, Zhang X C, Wang C H, Shi P Y, Zhang Y Y, Sun W H, Li Y L, Wu J H. Solvent vapor annealing-assisted mesoporous PbBr2 frameworks for high-performance inorganic CsPbBr3 perovskite solar cells[J]. Surf. Interfaces, 2023,37102707. doi: 10.1016/j.surfin.2023.102707
Tong A L, Zhu C W, Yan H Y, Zhang C H, Jin Y N, Wu Y J, Cao F X, Wu J H, Sun W H. Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation[J]. J. Alloy. Compd., 2023,942169084. doi: 10.1016/j.jallcom.2023.169084
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149