Citation: Zhen WANG, Si-Yuan LI, Yuan WANG, Wei-Na WU, Lei ZHANG, Zhong CHEN, Ling-Ling YAN. Pyrrole-based hydrazone for fluorescent imaging of Hg2+ in lysosomes[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1122-1130. doi: 10.11862/CJIC.2023.083 shu

Pyrrole-based hydrazone for fluorescent imaging of Hg2+ in lysosomes

Figures(9)

  • A novel pyrrole-based hydrazone has been synthesized for colorimetric and fluorescent turn-on detection of Hg2+ ions. A 1:1 binding ratio of the Hg2+ complex has been obtained from Job's plots and MS data. The coordination mode was systematically investigated by 1H NMR, time-resolved fluorescence spectroscopy, and density functional theory (DFT) calculations. The limit of detection of 1 for Hg2+ was as low as 45 nmol·L-1 with an association constant of 5.78×108 L·mol-1. It is worth noting that the response of 1 to Hg2+ was good in a pH range of 4.0 to 10.0. In addition, owing to the existence of the morpholine group, the probe can detect lysosomal Hg2+ in HeLa cells.
  • 加载中
    1. [1]

      CHENG Z, LIANG J, REN X L, CUI Y W, YANG L N.. Research progress in organic small-molecule fluorescent Zn2+ probes and fluo- rescent imaging analysis of biological Zn2+.[J]. Chemical World, 2021,62(12):707-716.  

    2. [2]

      Marumoto M, Sakamoto M, Marumoto K, Tsuruta S, Komohara Y. Mer- cury and selenium localization in the cerebrum, cerebellum, liver, and kidney of a Minamata disease case[J]. Acta Histochem.Cytochem., 2020,53(6):147-155. doi: 10.1267/ahc.20-00009

    3. [3]

      Kim K H, Kabir E, Jahan S A. A review on the distribution of Hg in the environment and its human health impacts[J]. J. Hazard. Mater., 2016,306:376-385. doi: 10.1016/j.jhazmat.2015.11.031

    4. [4]

      Erdemir S, Kocyigit O, Malkondu S. Detection of Hg2+ ion in aqueous media by new fluorometric and colorimetric sensor based on triazole- rhodamine[J]. J. Photochem. Photobiol. A, 2015,309:15-21. doi: 10.1016/j.jphotochem.2015.04.017

    5. [5]

      Sarkar A, Chakraborty S, Lohar S, Ahmmed E, Saha N C, Mandal S K, Dhara K. Chattopadhyay P. A lysosome- targetable fluorescence sen- sor for ultrasensitive detection of Hg2+ in living cells and real sam- ples[J]. Chem. Res. Toxicol., 2019,32(6):1144-1150. doi: 10.1021/acs.chemrestox.9b00005

    6. [6]

      Yuan X, Leng T H, Guo Z Q, Wang C Y, Li J Z, Yang W W, Zhu W H. A FRET - based dual - channel turn - on fluorescence probe for the detection of Hg2+ in living cells[J]. Dyes Pigm., 2018,161:403-410.

    7. [7]

      Wang Y S, Ding H C, Wang S, Fan C B, Tu Y Y, Liu G, Pu S Z. A rati- ometric and colorimetric probe for detecting Hg2+ based on naph- thalimide rhodamine and its staining function in cell imaging[J]. RSC Adv., 2019,9(21):11664-11669. doi: 10.1039/C9RA01459D

    8. [8]

      Lan L X, Niu Q F, Li T D.. A highly selective colorimetric and ratio- metric fluorescent probe for instantaneous sensing of Hg2+ in water, soil and seafood and its application on test strips[J]. Anal. Chim. Acta, 2018,1023:105-114. doi: 10.1016/j.aca.2018.03.023

    9. [9]

      HOU S H, LI S Q, TANG L J.. Synthesis of a novel water-soluble rho- damine-based fluorescent probe and its selective detection of free tri- valent ions.[J]. Chinese Journal of Applied Chemistry, 2022,39(2):241-246.  

    10. [10]

      Wu C J, Wang J B, Shen J J, Bi C, Zhou H W. Coumarin-based Hg2+ fluorescent probe: Synthesis and turn - on fluorescence detection in neat aqueous solution[J]. Sens. Actuator B-Chem., 2017,243:678-683. doi: 10.1016/j.snb.2016.12.046

    11. [11]

      Zhang Y F, Chen H Y, Chen D, Wu D, Chen Z, Zhang J, Chen X Q, Liu S H, Yin J. A colorimetric and ratiometric fluorescent probe for mercury in lysosome[J]. Sens. Actuator B-Chem.., 2016,224:907-914. doi: 10.1016/j.snb.2015.11.018

    12. [12]

      SUN J F, QIAN Y.. A novel naphthalimide- rhodamine fluorescence sensor: synthesis, aggregation - induced emission enhancement and its dual-channel detection property[J]. Chin. J. Org. Chem., 2016,36(1):151-157.  

    13. [13]

      Vinoth Kumar G G, Kesavan M P, Tamilselvi A, Rajagopal G, Raja J D, Sakthipandi K, Rajesh J, Sivaraman G. A reversible fluorescent chemosensor for the rapid detection of Hg2+ in an aqueous solution: Its logic gates behavior[J]. Sens. Actuator B-Chem., 2018,273:305-315. doi: 10.1016/j.snb.2018.06.067

    14. [14]

      Wang Y, Mao P D, Wu W N, Mao X J, Fan Y C, Zhao X L, Xu Z Q, Xu Z H. New pyrrole-based single-molecule multianalyte sensor for Cu2+, Zn2+, and Hg2+ and its AIE Activity[J]. Sens. Actuator B -Chem., 2018,255:3085-3092. doi: 10.1016/j.snb.2017.09.133

    15. [15]

      Zhu J L, Xu Z, Yang Y, Xu L. Small-molecule fluorescent probes for specific detection and imaging of chemical species inside lysosomes[J]. Chem. Commun., 2019,55(47):6629-6671. doi: 10.1039/C9CC03299A

    16. [16]

      Yuan L L, Shi X J, Tang B Z, Wang W X. Real-time in vitro monitor- ing of the subcellular toxicity of inorganic Hg and methylmercury in zebrafish cells[J]. Aquat. Toxicol., 2021,236105859. doi: 10.1016/j.aquatox.2021.105859

    17. [17]

      Lauwerys R, Buchet J P. Study on the mechanism of lysosome labili- zation by inorganic mercury in vitro[J]. Eur. J. Biochem., 1972,26(4):535-542. doi: 10.1111/j.1432-1033.1972.tb01796.x

    18. [18]

      He D D, Liu W, Sun R, Fan C, Xu Y J, Ge J F. N-pyridineium-2 -yl Darrow Red analogue: Unique near-infrared lysosome-biomarker for the detection of cancer cells[J]. Anal. Chem., 2015,87(3):1499-1502. doi: 10.1021/ac5045912

    19. [19]

      PU T, YANG Y H, WANG K B, YE M, FAN L M, FU L X, SU F W, ZHA Y G. Determination of the nicotinamide compounds by using MTT colorimetric assay against pathogenic bacteria[J]. J. Yunnan Agric. Univ. (Natural Science), 2019,34(1):15-21.  

    20. [20]

      Wu W N, Wu H, Zhong R B, Wang Y, Xu Z H, Zhao X L, Xu Z Q, Fan Y C. Ratiometric fluorescent probe based on pyrrole - modified rhodamine 6G hydrazone for the imaging of Cu2+ in lysosomes[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2018,212:121-127.

    21. [21]

      Wang Y, Chang H Q, Wu W N, Zhao X L, Yang Y, Xu Z Q, Xu Z H, Jia L. Rhodamine-2 -thioxoquinazolin -4-one conjugate: A highly sen- sitive and selective chemosensor for Fe3+ ions and crystal structures of its Ag and Hg complexes[J]. Sens. Actuator B-Chem., 2017,239:60-68. doi: 10.1016/j.snb.2016.07.170

    22. [22]

      Wu W N, Mao P D, Wang Y, Zhao X L, Xu Z Q, Xu Z H, Xue Y. Quinoline containing acetyl hydrazone: An easily accessible switch- on optical chemosensor for Zn2+[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2018,188:324-331. doi: 10.1016/j.saa.2017.07.020

    23. [23]

      Qin J C, Fan L, Yang Z Y. A small - molecule and resumable two- photon fluorescent probe for Zn2+ based on a coumarin Schiff - base[J]. Sens. Actuator B-Chem., 2016,228:156-161.  

    24. [24]

      Jia F Y, Luo J W, Zhang B. Mechanistic insight into palladium- catalyzed enantioselective remote meta-C-H arylation and alkylation by using density functional theory (DFT) calculations[J]. Adv. Synth. Catal., 2020,362(8):1686-1695.

  • 加载中
    1. [1]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    2. [2]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    3. [3]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    4. [4]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    9. [9]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    10. [10]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    11. [11]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    12. [12]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    13. [13]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    14. [14]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    15. [15]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    16. [16]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    19. [19]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    20. [20]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

Metrics
  • PDF Downloads(1)
  • Abstract views(1365)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return