Citation: Ya-Bo ZHU, Cheng-Ye HUA, Ting-Ting XIE, Guang-Lan WANG, Pei-Zhong FENG. One-step synthesis of FeOOH/black phosphorus nano-composite: Synergistic achieving system's excellent oxygen evolution property[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1103-1112. doi: 10.11862/CJIC.2023.082 shu

One-step synthesis of FeOOH/black phosphorus nano-composite: Synergistic achieving system's excellent oxygen evolution property

  • Corresponding author: Ya-Bo ZHU, zhuyabo@163.com
  • Received Date: 27 July 2022
    Revised Date: 24 April 2023

Figures(9)

  • In the study, by hydrothermal method, FeOOH nano-materials were grown on the surface of black phosphorus (BP) nanosheets to prepare FeOOH/BP composite. As an oxygen evolution reaction (OER) electrocatalyst, its overpotential was only 191 mV at the current density of 20 mA·cm-2, with a Tafel slope of 49.9 mV·dec-1. After 1 000 cycles, its overpotential only increased by 3 mV, showing the best stability. FeOOH was loaded on the BP surface, which can hinder BP oxidation and enhance its carrier conduction ability. And the loaded nano-FeOOH had a small scale and a weak crystalline nature, which is conducive to enriching their active site and increasing the active area. The synergy of this binary system is the main reason for the OER performance improvement. By comparison, it was found that the active area of FeOOH/BP reached 26.9 mF·cm-2, which was 2.3 times that of pure FeOOH (11.8 mF·cm-2) and 1.6 times that of pure BP nanosheets (16.8 mF·cm-2). The excellent activity of this composite material is not only attributed to the morphology change of FeOOH, which significantly expands its effective active area but also benefits from the encapsulated BP, which has better dispersion and stronger conductivity.
  • 加载中
    1. [1]

      LI J R, YIN Y L, ZHOU K H, WANG F, REN C B. Progress of oxygen generation technology by water electrolysis in space station[J]. Space Medicine & Medical Engineering, 2013,26(3):215-220. doi: 10.16289/j.cnki.1002-0837.2013.03.021

    2. [2]

      Song S Z, Zhou J, Sun J, Zhang S Y, Lin X, Hu Z W, Hu J, Zhang L J, Wang J Q. Understanding the origin of high oxygen evolution reaction activity in the high Sr-doped perovskite[J]. Chin. J. Catal., 2020,41(4):592-597. doi: 10.1016/S1872-2067(19)63441-8

    3. [3]

      Xu Y, Ren K L, Xu R. In situ formation of amorphous Fe-based bimetallic hydroxides from metal-organic frameworks as efficient oxygen evolution catalysts[J]. Chin. J. Catal., 2021,42(8):1370-1378. doi: 10.1016/S1872-2067(20)63741-X

    4. [4]

      CHEN R X, ZHAI Z L, LI Z L, LU Y L, WANG D, WU Z C, LI Y P, HE G X, LI Y B. Preparation and OER properties of chromium-doped jarosite microspheres[J]. Nonferrous Metals (Extractive Metallurgy), 2022(5):77-85.  

    5. [5]

      Xu Q, Zhu Y B, Feng P Z, Lv K L, Xu H. In situ growth of porous carbon with adjustable morphology on black phosphorus nanosheets for boosting electrocatalytic H2 and O2 evolution[J]. New J. Chem., 2021,45(27):12203-12212. doi: 10.1039/D1NJ02185K

    6. [6]

      Gao X Q, Liu X M, Yang S J, Zhang W. Black phosphorus incorporated cobalt oxide: Biomimetic channels for electrocatalytic water oxidation[J]. Chin. J. Catal., 2022,43(4):1123-1130. doi: 10.1016/S1872-2067(21)63937-2

    7. [7]

      Liang T T, Lenus S, Ma F, Dai Z F. Interface and M3+/M2+ valence dual -engineering on nickel cobalt sulfoselenide/black phosphorus heterostructure for efficient water splitting electrocatalysis[J]. Energy Environ. Mater., 2022,6e12332.

    8. [8]

      Ma P, Luo S, Ma J T. Vertically aligned FeOOH nanosheet arrays on alkali-treated nickel foam as highly efficient electrocatalyst for oxygen evolution reaction[J]. J. Colloid Interface Sci., 2020,574:241-250. doi: 10.1016/j.jcis.2020.04.058

    9. [9]

      Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. FeOOH/Co/FeOOH hybrid nanotube arrays as high -performance electrocatalysts for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2016,55(11):3694-3698. doi: 10.1002/anie.201511447

    10. [10]

      Wang K, Du H F, Ai W, Huang W. Kinetically controlled, scalable synthesis of gamma-FeOOH nanosheet arrays on nickel foam toward efficient oxygen evolution: The key role of in - situ -generated γ-NiOOH[J]. Adv. Mater., 2021,33(11)e2005587. doi: 10.1002/adma.202005587

    11. [11]

      Li H X, Zhou Q, Zhou H H, Huang Z Y, Jiao S Q, Kuang Y F. Biomimetic design of ultrathin edge-riched FeOOH@Carbon nanotubes as high-efficiency electrocatalysts for water splitting[J]. Appl. Catal. B - Environ., 2019,255117755. doi: 10.1016/j.apcatb.2019.117755

    12. [12]

      Corcoran C J, Tavassol H, Rigsby M A, Bagus P S, Wieckowski A. Application of XPS to study electrocatalysts for fuel cells[J]. J. Power Sources, 2010,195(24):7856-7879. doi: 10.1016/j.jpowsour.2010.06.018

    13. [13]

      Qiu C Y, He S Q, Wang Y, Wang Q X, Zhao C. Interfacial engineering FeOOH/CoO nanoneedle array for efficient overall water splitting driven by solar energy[J]. Chem.-Eur. J., 2020,26(18):4120-4127. doi: 10.1002/chem.201904352

    14. [14]

      Lee J, Lee H, Lim B. Chemical transformation of iron alkoxide nanosheets to FeOOH nanoparticles for highly active and stable oxygen evolution electrocatalysts[J]. J. Ind. Eng. Chem., 2018,58:100-104. doi: 10.1016/j.jiec.2017.09.013

    15. [15]

      Cheng J L, Shen B S, Song Y Y, Cheng Y L. FeOOH decorated CoP porous nanofiber for enhanced oxygen evolution activity[J]. Chem. Eng. J., 2022,428131130. doi: 10.1016/j.cej.2021.131130

    16. [16]

      Shi F B, Geng Z B, Huang K K, Feng S H. Cobalt nanoparticles/black phosphorus nanosheets: An efficient catalyst for electrochemical oxygen evolution[J]. Adv. Sci., 2018,5(8)1800575. doi: 10.1002/advs.201800575

    17. [17]

      Wang J H, Liu D N, Huang H, Yu X F. In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis[J]. Angew. Chem. Int. Ed., 2018,57(10):2600-2604.  

    18. [18]

      Wang X, Li Q X, Shi P H, Fan J C, Min Y L, Xu Q J. Nickel nitride particles supported on 2D activated graphene-black phosphorus heterostructure: An efficient electrocatalyst for the oxygen evolution reaction[J]. Small, 2019,15(48)e1901530. doi: 10.1002/smll.201901530

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    6. [6]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(5)
  • Abstract views(1148)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return