Citation: Jin-Xiu WU, Qian-Qian WANG, Bao-Long WU, Zhao-Gang LIU, Yan-Hong HU, Yuan-Hao QI, Xiao-Wei ZHANG, Fu-Shan FENG, Jian-Fei LI. GdPO4: Sm3+ phosphor: Optimization of calcination temperature and doping concentration and fluorescence and magnetic properties[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1179-1192. doi: 10.11862/CJIC.2023.081 shu

GdPO4: Sm3+ phosphor: Optimization of calcination temperature and doping concentration and fluorescence and magnetic properties

  • Corresponding author: Jin-Xiu WU, m13674773965@163.com
  • Received Date: 6 June 2022
    Revised Date: 25 April 2023

Figures(16)

  • Nano-phosphor precursors were synthesized with GdPO4 as the matrix and Sm3+ as the activator using the hydrothermal synthesis method. The precursors were calcinated at 800, 900, 1 000, 1 100, and 1 200℃ respectively, thus obtaining GdPO4: Sm3+ phosphors. Firstly, the optimal calcination temperature of GdPO4: Sm3+ was optimized. Then the effect of Sm3+ doping amount on the fluorescence properties of GdPO4: Sm3+ was studied. The hightemperature fluorescence and magnetic properties of the best product were studied in detail. The crystal structure, morphology, luminescence, and magnetic properties of the phosphors were characterized using an X-ray diffractometer (XRD), scanning electron microscope (SEM), magnetometer, and fluorescence spectrophotometer (FL). The results indicate that the crystal structure of phosphors was changed from the precursor GdPO4·H2O: Sm3+ in the hexagonal crystal system to GdPO4: Sm3+ in the monoclinic crystal system. The morphology was changed from nanorods to like-sphere particles. The luminous intensity and phosphorescence lifetime of the phosphors attained their highest levels when the calcination temperature was 1 000℃ and the Sm3+ doping concentration was 2%. The type of energy transferred between Sm3+ in GdPO4: 2%Sm3+ was electric dipole-electric dipole interaction, and the critical distance of energy transfer was about 1.646-1.884 nm. The optimal product GdPO4: 2%Sm3+ had excellent thermal stability, with the thermal quenching activation energy as -0.157 eV. Moreover, it had good paramagnetism, with a mass susceptibility of 1.22×10-4 emu·g-1·Oe-1.
  • 加载中
    1. [1]

      Yang J F, Xiong H L, Dong J C, Yang C M, Gan S C, Zou L C. Facile hydrothermal synthesis and luminescent properties of Sm3+/Eu3+ codoped GdPO4 phosphors[J]. J. Phys. Chem. Solids, 2017,111:355-363. doi: 10.1016/j.jpcs.2017.08.031

    2. [2]

      Guan H X, Liu G X, Wang J X, Dong X T, Yu W S. Multicolor tunable luminescence and paramagnetic properties of NaGdF4:Tb3+/Sm3+ multifunctional nanomaterials[J]. Dalton Ttans., 2014,43(28):10801-10808. doi: 10.1039/c4dt00158c

    3. [3]

      Tang Y X, Mei R, Yang S K, Tang H X, Yin W Z, Xu Y C, Gao Y P. Hollow GdPO4: Eu3+ microspheres: Luminescent properties and applications as drug carrier[J]. Superlattice Microstruct., 2016,92:256-263. doi: 10.1016/j.spmi.2016.02.038

    4. [4]

      Yang Z F, Xu D H, Sun J Y. Synthesis and luminescence properties of Ba3Lu(PO4)3:Sm3+ phosphor for white light-emitting diodes[J]. Opt. Express, 2017,25:391-401. doi: 10.1364/OE.25.00A391

    5. [5]

      Jiang H X, Lv S C. Intense red emission and two-way energy transfer in Sm3+, Eu3+ co-doped NaLa(WO4)2 phosphors[J]. Mater. Res. Bull., 2019,111:140-145. doi: 10.1016/j.materresbull.2018.11.004

    6. [6]

      Ouertani G, Ferhi M, Horchani-Naifer K, Ferid M. Effect of Sm3+ concentration and excitation wavelength on spectroscopic properties of GdPO4: Sm3+ phosphor J[J]. Alloy. Compd., 2021,885161178. doi: 10.1016/j.jallcom.2021.161178

    7. [7]

      Li H H, Gong X H, Chen Y J, Huang J H, Lin Y F, Luo Z D, Huang Y D. Luminescence properties of phosphate phosphors Ba3Gd1-x(PO4)3:xSm3+[J]. J. Rare Earths, 2018,36(5):456-460. doi: 10.1016/j.jre.2017.09.014

    8. [8]

      Han L, Xu D H, Xu Q G, Di Q M, Su J Y. Synthesis and luminescence properties of Sr3GdNa(PO4)3F: Sm3+ phosphor[J]. J. Mater. Sci., 2015,50(5):2257-2262. doi: 10.1007/s10853-014-8788-9

    9. [9]

      Hu Y, Li X X, Wang X, Li Y Q, Li T Y, Kang H X, Zhang H W, Yang Y M. Greatly enhanced persistent luminescence of YPO4:Sm3+ phosphors via Tb3+ incorporation for in vivo imaging[J]. Opt. Express, 2020,28(2):2649-2660. doi: 10.1364/OE.384678

    10. [10]

      Na ir, G B, Dhoble S J. Orange light-emitting Ca3Mg3(PO4)4:Sm3+ phosphors[J]. Luminescence, 2017,32(1):125-128. doi: 10.1002/bio.3194

    11. [11]

      Zou J F, Zhu Q, Li J G. Lactic-acid enhanced solvothermal crystallization, color-tunable photoluminescence, and thermal stability of h-LaPO4:Ce3+, Tb3+, Sm3+ nanocrystals[J]. CrystEngComm, 2020,22(25):4289-4300. doi: 10.1039/D0CE00491J

    12. [12]

      Wu J X, Jia H J, Li M, Jia H L, Liu Z G. Influence of pH on nanophosphor YPO4:2%Sm3+ and luminescent properties[J]. Appl. Phys. A-Mater., 2020,126(87):1-8.

    13. [13]

      Wu J X, Li M, Jia H L, Liu Z G, Jia H J, Wang Z Z. Morphology formation mechanism and fluorescence properties of nano-phosphor YPO4:Sm3+ excited by near-ultraviolet light[J]. J. Alloy. Compd., 2020,821153535. doi: 10.1016/j.jallcom.2019.153535

    14. [14]

      Zou X, He L H, Tan D H, Lei F Y, Jiang N, Zheng Q, Lin D M, Xu C G, Liu Y F. Anneal-induced transformation of phase structure, morphology and luminescence of GdPO4: Sm3+ nanomaterials synthesized by a hydrothermal method[J]. Dalton Ttans., 2017,46(9):2948-2956. doi: 10.1039/C6DT04583A

    15. [15]

      LIU C L, WU J X, JIA H L, LIU Z G, HU Y H, WANG X, QI Y H, WANG Z Z. Construction and fluorescence properties of fluorescent nanomaterials YPO4:Sm3+@YPO4@polyethylene glycol[J]. Chinese J. Inorg. Chem., 2022,38(7):1272-1282.  

    16. [16]

      Zhang Z X, Zhang Y P, Feng Z G, Wang C, Xia A H P, Zhang X M. Luminescent properties of Ce3+/Tb3+ co-doped glass ceramics containing YPO4 nanocrystals for W-LEDs[J]. J. Rare Earths, 2016,34(5):464-469. doi: 10.1016/S1002-0721(16)60050-9

    17. [17]

      Zhang L, Dong B H, Wang G H, Gao R J, Su G, Wang W, Cao L X. Controllable synthesis and luminescent properties of rare earth doped Gd2(MoO4)3 nanoplates[J]. Colloids Surf. A, 2017,504:134-139.  

    18. [18]

      Halappa P, Mathur A, Marie-Helene D, Shivakumara C. Alkali metal ion Co-doped Eu3+ activated GdPO4 phosphors: Structure and photoluminescence properties[J]. J. Alloy. Compd., 2018,40:1086-1098.  

    19. [19]

      YANG W B, XIONG F B, YANG Y, ZHOU Q, XIE L C, LING S, LUO X. Low thermal quenching novel Sr3Ga2Ge4O14:Sm3+ orange-red phosphor[J]. Chinese Journal of Luminescence, 2022,43(6):879-890.  

    20. [20]

      Cho J, Kim C H. Solid -state phase transformation mechanism from hexagonal GdPO4: Eu3+ nanorods to monoclinic nanoparticles[J]. RSC Adv., 2014,4:31385-31392. doi: 10.1039/C4RA03229B

    21. [21]

      Liu Y S, Luo W Q, Zhu H M, Chen X Y. Optical spectroscopy of lanthanides doped in wide band-gap semiconductor nanocrystals[J]. Luminescence, 2011,131:415-422. doi: 10.1016/j.jlumin.2010.07.018

    22. [22]

      Yang Z P, Yue H A, Song Y C, Zhao Y H, Liu P F. Synthesis and luminescence properties of a novel red Sr3Bi(PO4)3:Sm3+ phosphor[J]. J. Rare Earths, 2012,30(12):1199-1202. doi: 10.1016/S1002-0721(12)60205-1

    23. [23]

      Ma B, Liu B X. Luminescence properties and crystal structure of Sr3Sc(PO4)3:Sm3+ as novel orange-red emitting phosphors[J]. J. Lumin., 2017,188:54-59. doi: 10.1016/j.jlumin.2017.04.012

    24. [24]

      Yang F, Liu Y F, Tian X D, Dong G Y, Yu Q M. Luminescence properties of phosphate phosphor Ba3Y(PO4)3:Sm3+[J]. Solid State Sci., 2015,225:19-23. doi: 10.1016/j.jssc.2014.11.025

    25. [25]

      Gupta I, Singh S, Bhagwan S, Singh D. Rare earth (RE) doped phosphors and their emerging applications: A review[J]. Ceram. Int., 2021,47(14):19282-19303. doi: 10.1016/j.ceramint.2021.03.308

    26. [26]

      Kumar G A, Balli N R, Kailasnath M, Mimun L C, Dannangoda C, Martirosyan K S, Santhosh C, Sardar D K. Spectroscopic and magnetic properties of neodymium doped in GdPO4 sub-micron-stars prepared by solvothermal method[J]. J. Alloy. Compd., 2016,672:668-673. doi: 10.1016/j.jallcom.2016.02.165

    27. [27]

      Yawalkar M M, Zade G D, Singh V, Dhoble S J. Investigation of luminescence processes in Li6Gd(BO3)3: Eu3+ phosphor[J]. J. Mater. Sci.-Mater. Electron., 2017,28(1):180-189. doi: 10.1007/s10854-016-5509-y

    28. [28]

      Li L, Tang X H, Jiang Z Q, Zhou X J, Jiang S, Luo X B, Xiang G T, Zhou K N. NaBaLa2(PO4)3:A novel host lattice for Sm3+-doped phosphor materials emitting red dish-orange light[J]. J. Alloy. Compd., 2017,701:515-523. doi: 10.1016/j.jallcom.2017.01.171

    29. [29]

      SHI C W, JI C Y, ZENG T, HUANG Z, TIAN X Y, PENG Y X. Synthesis and properties of red phosphor La2Ge3O12:Sm3+ with high color purity and thermal stability[J]. Chinese J. Inorg. Chem, 2020,36(5):901-907.  

    30. [30]

      Priya R, Pandey O P, Dhoble S J. Review on the synthesis, structural and photo-physical properties of Gd2O3 phosphors for various luminescent applications[J]. Opt. Laser Technol., 2021,135106663. doi: 10.1016/j.optlastec.2020.106663

    31. [31]

      Yang J F, Wang X X, Song L, Luo N, Dong J C, Gan S C, Zou L C. Tunable luminescence and energy transfer properties of GdPO4: Tb3+, Eu3+ nanocrystals for warm-white LEDs[J]. Opt. Mater., 2018,85:71-78. doi: 10.1016/j.optmat.2018.08.043

    32. [32]

      Gan Y, Liu W, Zhang W T, Li W J, Huang Y, Qiu K H. Effects of Gd3+ codoping on the enhancement of the luminescent properties of a NaBi(MoO4)2:Eu3+ red-emitting phosphors[J]. J. Alloy. Compd., 2019,784:1003-1010. doi: 10.1016/j.jallcom.2019.01.062

    33. [33]

      NAN S R, FU Z D, ZHANG Y X, LIU G X. Preparation and luminescent properties of Tb3+, Sm3+ doped YNbO4 multicolor fluorescent materials[J]. Chinese J. Inorg. Chem., 2021,37:229-234. doi: 10.11862/CJIC.2021.004

    34. [34]

      Blasse G. Energy transfer between inequivalent Eu2+ ions[J]. Solid State Sci., 1986,62207. doi: 10.1016/0022-4596(86)90233-1

    35. [35]

      Dexter D L. A theory of sensitized luminescence in solids[J]. J. Chem. Phys., 1952,11:835-855.  

    36. [36]

      WU J X. Orange-red luminescent materials doped with trivalent samarium ions and their biological applications. Beijing: University of Science and Technology Beijing, 2020: 101-114

    37. [37]

      Guo H, Devakumar B, Li B, Huang X. Novel Na3Sc2(PO4)3:Ce3+, Tb3+ phos-phors for white LEDs: Tunable blue-green color emission, high quantum efficiency and excellent thermal stability[J]. Dyes Pigment., 2018,151:81-88. doi: 10.1016/j.dyepig.2017.12.051

    38. [38]

      Shi P, Xia Z, Molokeev M S, Atuchin V. Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors[J]. Dalton Trans., 2014,43(25):9669-9676. doi: 10.1039/C4DT00339J

    39. [39]

      Li B, Huang X Y, Guo H, Zen Y J. Energy transfer and tunable photoluminescence of LaBWO6:Tb3+, Eu3+ phosphors for near-UV white LEDs[J]. Dyes Pigment., 2018,150:67-72. doi: 10.1016/j.dyepig.2017.11.003

    40. [40]

      Yang M, You H P, Ling Y L, Xu J Z, Lu F, Dai L M, Liu Y. Morphology controllable and highly luminescent monoclinic LaPO4:Eu3+ microspheres[J]. J. Alloy. Compd., 2014,582:603-608. doi: 10.1016/j.jallcom.2013.08.091

    41. [41]

      Guo H, Devakumar D, Li B, Huang X Y. Novel Na3Sc2(PO4)3:Ce3+, Tb3+ phosphors for white LEDs: Tunable blue-green color emission, high quantum efficiency and excellent thermal stability[J]. Dyes Pigm., 2018,151:81-88.  

    42. [42]

      Li S X, Wang L, Zhu Q Q, Tang D M, Liu X J, Cheng G F, Lu L, Takeda T, Hirosaki N, Huang Z R, Xie R J. Crystal structure, tunable emission and applications of Ca1-xAl1-xSi1+xN3-xOx: RE (x=0-0[J]. 22, RE=Ce3+, Eu2+) solid solution phosphors for white light-emit- ting diodes. J. Mater. Che. C, 2016,4(47):11219-11230.

    43. [43]

      Sarkar B J, Bandyopadhyay A, Mandal J, Deb A K, Chakrabarti P, Chakrabarti K. Paramagnetic to ferromagnetic phase transition of codoped Gd2O3 prepared by chemical route[J]. J. Alloy. Compd., 2016,656:339-346.  

    44. [44]

      Hu F F, Wei X T, Qin Y G, Jiang S, Li X Y, Zhou S S, Chen Y H, Duan C K, Yin M. Yb3+/Tb3+ co-doped GdPO4 transparent magnetic glass-ceramics for spectral conversion[J]. J. Alloy. Compd., 2016,674:162-167.  

    45. [45]

      Janulevicius M, Klimkevičius V, Mikoliunaite L, Vengalis B, Vargalis R, Sakirzanov1 S, Plausinaitiene V, Zilinskas A, Arturas K. Ultralight magnetic nanofibrous GdPO4 aeroge[J]. ACS Omega, 2020,5(23):14180-14185.  

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    6. [6]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    7. [7]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    8. [8]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    9. [9]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    10. [10]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    11. [11]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    12. [12]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    13. [13]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    14. [14]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    15. [15]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    16. [16]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    17. [17]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    18. [18]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    19. [19]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    20. [20]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

Metrics
  • PDF Downloads(0)
  • Abstract views(969)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return