Citation: Jing ZHU, Shun ZHONG, Lin SUN, Yong DAI. Photo-responsive UiO-66 with spiropyran functionalization adsorbent: Preparation and adsorption performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1510-1518. doi: 10.11862/CJIC.2023.079 shu

Photo-responsive UiO-66 with spiropyran functionalization adsorbent: Preparation and adsorption performance

  • Corresponding author: Jing ZHU, jingzhu@ycit.cn Yong DAI, dy@ycit.cn
  • Received Date: 20 February 2023
    Revised Date: 2 May 2023

Figures(11)

  • Herein, a representative metal-organic framework (MOF), UiO-66, with a microporous structure and hydrothermal stability, has been chosen as porous support. Photo-responsive adsorbents were prepared by introducing the spiropyran derivative SP-CH3 into the non-polar pore cage of UiO-66 as photo-regulated active sites. The framework structure of the support material was maintained after SP-CH3 functionalization. An anionic dye, methyl orange, was adopted as a probe to explore the adsorption and desorption performance of the adsorbent in different light conditions. The experimental results showed that the adsorption amount of methyl orange by the sample after UV irradiation was 41.99 mg·g-1, which increased by 57.56% in comparison to that after visible light irradiation. In addition, the desorption of methyl orange of the adsorbent after visible light irradiation was up to 81.6%. Changes in the electric surface charge and polarity of the adsorbents, owing to efficient photo-isomerization of spiropyran in the non-polar environment of UiO-66 cage, have great effects on the adsorption/desorption behaviors of methyl orange on the adsorbents. The resultant adsorbents with photo-regulated active sites exhibit enhanced adsorptive performance and effective desorption.
  • 加载中
    1. [1]

      Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016,532(7600):435-437. doi: 10.1038/532435a

    2. [2]

      Li J R, Yu J, Lu W, Sun L B, Sculley J, Balbuena P B, Zhou H C. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption[J]. Nat. Commun., 2013,4(1)1538. doi: 10.1038/ncomms2552

    3. [3]

      Martin C R, Park K C, Leith G A, Yu J, Mathur A, Wilson G R, Gange G B, Barth E L, Ly R T, Manley O M, Forrester K L, Karakalos S G, Smith M D, Makris T M, Vannucci A K, Peryshkov D V, Shustova N B. Stimuli-modulated metal oxidation states in photochromic MOFs[J]. J. Am. Chem. Soc., 2022,144(10):4457-4468. doi: 10.1021/jacs.1c11984

    4. [4]

      Zhu Z H, Ni Z, Zou H H, Feng G, Tang B Z. Smart metal-organic frameworks with reversible luminescence/magnetic switch behavior for HCl vapor detection[J]. Adv. Funct. Mater., 2021,31(52)2106925. doi: 10.1002/adfm.202106925

    5. [5]

      Kotsuchibashi Y. Recent advances in multi-temperature-responsive polymeric materials[J]. Polym. J., 2020,52(7):681-689. doi: 10.1038/s41428-020-0330-0

    6. [6]

      Wei Y B, Zeng Q, Huang J Z, Hu Q, Guo X R, Wang L S. An electro-responsive imprinted biosensor with switchable affinity toward proteins[J]. Chem. Commun., 2018,54(66):9163-9166. doi: 10.1039/C8CC05482G

    7. [7]

      Ding J J, Zhu J, Li Y X, Liu X Q, Sun L B. Smart adsorbents functionalized with thermoresponsive polymers for selective adsorption and energy-saving regeneration[J]. Ind. Eng. Chem. Res., 2017,56(15):4341-4349. doi: 10.1021/acs.iecr.7b00582

    8. [8]

      Wang Z, Knebel A, Grosjean S, Wagner D, Bräse S, Wöll C, Caro J, Heinke L. Tunable molecular separation by nanoporous membranes[J]. Nat. Commun., 2016,7(1)13872. doi: 10.1038/ncomms13872

    9. [9]

      Pallach R, Keupp J, Terlinden K, Frentzel-Beyme L, Kloß M, Machalica A, Kotschy J, Vasa S K, Chater P A, Sternemann C, Wharmby M T, Linser R, Schmid R, Henke S. Frustrated flexibility in metal-organic frameworks[J]. Nat. Commun., 2021,12(1)4097. doi: 10.1038/s41467-021-24188-4

    10. [10]

      Dong J, Wee V, Zhao D. Stimuli-responsive metal-organic frameworks enabled by intrinsic molecular motion[J]. Nat. Mater., 2022,21:1334-1340. doi: 10.1038/s41563-022-01317-y

    11. [11]

      Park S, Lee J, Jeong H, Bae S, Kang J, Moon D, Park J. Multi-stimuli-engendered radical-anionic MOFs: Visualization of structural transformation upon radical formation[J]. Chem, 2022,8(7):1993-2010. doi: 10.1016/j.chempr.2022.03.023

    12. [12]

      Stuart M A C, Huck W T S, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials[J]. Nat. Mater., 2010,9(2):101-113. doi: 10.1038/nmat2614

    13. [13]

      Jiang Y, Tan P, Qi S C, Sun L B. Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: Efficient adsorbents for tailorable CO2 capture[J]. Angew. Chem. Int. Ed., 2019,58(20):6600-6604. doi: 10.1002/anie.201900141

    14. [14]

      Li P, Xie G, Kong X Y, Zhang Z, Xiao K, Wen L, Jiang L. Light-controlled ion transport through biomimetic DNA-based channels[J]. Angew. Chem. Int. Ed., 2016,128(50):15866-15870. doi: 10.1002/ange.201609161

    15. [15]

      Yagai S, Kitamura A. Recent advances in photoresponsive supramolecular self-assemblies[J]. Chem. Soc. Rev., 2008,37(8):1520-1529. doi: 10.1039/b703092b

    16. [16]

      Zhu J, Tan P, Yang P P, Liu X Q, Jiang Y, Sun L B. Smart adsorbents with reversible photo-regulated molecular switches for selective adsorption and efficient regeneration[J]. Chem. Commun., 2016,52(77):11531-11534. doi: 10.1039/C6CC06279B

    17. [17]

      Ou R, Zhang H, Truong V X. A sunlight-responsive metal-organic framework system for sustainable water desalination[J]. Nat. Sustain., 2020,3(12):1052-1058. doi: 10.1038/s41893-020-0590-x

    18. [18]

      Euchler D, Ehgartner C R, Hüsing N. Monolithic spiropyran-based porous polysilsesquioxanes with stimulus-responsive properties[J]. ACS Appl. Mater. Interfaces, 2020,12(42):47754-47762. doi: 10.1021/acsami.0c14987

    19. [19]

      Genovese M E, Athanassiou A, Fragouli D. Photoactivated acidochromic elastomeric films for on demand acidic vapor sensing[J]. J. Mater. Chem. A, 2015,3(44):22441-22447. doi: 10.1039/C5TA06118K

    20. [20]

      Guan X, He M, Chang J. Photo-controllability of fluoride remediation by spiropyran-functionalized mesoporous silica powder[J]. J. Environ. Chem. Eng., 2021,9(1)104655. doi: 10.1016/j.jece.2020.104655

    21. [21]

      Zhu Q L, Xu Q. Metal-organic framework composites[J]. Chem. Soc. Rev., 2014,43(16):5468-5512. doi: 10.1039/C3CS60472A

    22. [22]

      Noro S I, Meng Y, Suzuki K. A temporarily pore-openable porous coordination polymer for guest adsorption/desorption[J]. Inorg. Chem., 2021,60(7):4531-4538. doi: 10.1021/acs.inorgchem.0c03420

    23. [23]

      Katz M J, Brown Z J, Colón Y J, Siu P W, Scheidt K A, Snurr R Q, Hupp J T, Farha O K. A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chem. Commun., 2013,49(82):9449-9451. doi: 10.1039/c3cc46105j

    24. [24]

      Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J. Am. Chem. Soc., 2008,130(42):13850-13851. doi: 10.1021/ja8057953

    25. [25]

      Klajn R. Spiropyran-based dynamic materials[J]. Chem. Soc. Rev., 2014,43(1):148-184. doi: 10.1039/C3CS60181A

    26. [26]

      Virmani E, Rotter J M, Mähringer A, von Zons T, Godt A, Bein T, Wuttke S, Medina D D. On-surface synthesis of highly oriented thin metal-organic framework films through vapor-assisted conversion[J]. J. Am. Chem. Soc., 2018,140(14):4812-4819. doi: 10.1021/jacs.7b08174

    27. [27]

      Liu H D, Cheng M, Liu Y, Zhang G X, Li L, Du L, Li B, Xiao S, Wang G F, Yang X F. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues[J]. Coord. Chem. Rev., 2022,458214428. doi: 10.1016/j.ccr.2022.214428

    28. [28]

      ZHANG S Z, MA C X, GUO H Y, SHE J H, ZHANG J Y, SHI Y B, LI G D, REN X M, XIE J L. Preparation and characterization of copper complexes of schiff base ligands synthesized in situ from spiropyran derivative[J]. Chinese J. Inorg. Chem., 2022,38(2):353-360.  

    29. [29]

      Garg S, Schwartz H, Kozlowska M, Kanj A B, Müller K, Wenzel W, Ruschewitz U, Heinke L. Conductance photoswitching of metal-organic frameworks with embedded spiropyran[J]. Angew. Chem. Int. Ed., 2019,58(4):1193-1197. doi: 10.1002/anie.201811458

    30. [30]

      Lyu J F, Liu H X, Zeng Z L Z, Zhang J S, Xiao Z X, Bai P, Guo X H. Metal-organic framework UiO-66 as an efficient adsorbent for boron removal from aqueous solution[J]. Ind. Eng. Chem. Res., 2017,56(9):2565-2572. doi: 10.1021/acs.iecr.6b04066

    31. [31]

      XU M Y, SONG G L, HAN B H. Postsynthetic modification of UiO-66 with perfluoroalkyl for adsorbing organic pollutants[J]. Chinese J. Inorg. Chem., 2019,35(11):2136-2144.  

    32. [32]

      Jiang F J, Chen S, Cao Z Q, Wang G J. A photo, temperature, and pH responsive spiropyran-functionalized polymer: Synthesis, self-assembly and controlled release[J]. Polymer, 2016,83:85-91. doi: 10.1016/j.polymer.2015.12.027

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    8. [8]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(12)
  • Abstract views(1965)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return